Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 330 (6003): 502-505

Copyright © 2010 by the American Association for the Advancement of Science

Fast Vesicle Fusion in Living Cells Requires at Least Three SNARE Complexes

Ralf Mohrmann,1,2,* Heidi de Wit,3 Matthijs Verhage,3 Erwin Neher,1 Jakob B. Sørensen1,4,5,*

Abstract: Exocytosis requires formation of SNARE [soluble N-ethylmaleimide–sensitive factor attachment protein (SNAP) receptor] complexes between vesicle and target membranes. Recent assessments in reduced model systems have produced divergent estimates of the number of SNARE complexes needed for fusion. Here, we used a titration approach to answer this question in intact, cultured chromaffin cells. Simultaneous expression of wild-type SNAP-25 and a mutant unable to support exocytosis progressively altered fusion kinetics and fusion-pore opening, indicating that both proteins assemble into heteromeric fusion complexes. Expressing different wild-type:mutant ratios revealed a third-power relation for fast (synchronous) fusion and a near-linear relation for overall release. Thus, fast fusion typically observed in synapses and neurosecretory cells requires at least three functional SNARE complexes, whereas slower release might occur with fewer complexes. Heterogeneity in SNARE-complex number may explain heterogeneity in vesicular release probability.

1 Department of Membrane Biophysics, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany.
2 Department of Physiology, University of Saarland, Homburg, Germany.
3 Center for Neurogenomics and Cognitive Research, Department of Functional Genomics, Vrije Universiteit (VU) Amsterdam and VU Medical Center, Amsterdam, Netherlands.
4 Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
5 Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark.

* To whom correspondence should be addressed. E-mail: Ralf.Mohrmann{at}uks.eu (R.M.); jakobbs{at}sund.ku.dk (J.B.S.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Synaptic vesicle recycling: steps and principles.
S. O. Rizzoli (2014)
EMBO J. 33, 788-822
   Abstract »    Full Text »    PDF »
Doc2b Synchronizes Secretion from Chromaffin Cells by Stimulating Fast and Inhibiting Sustained Release.
P. S. Pinheiro, H. de Wit, A. M. Walter, A. J. Groffen, M. Verhage, and J. B. Sorensen (2013)
J. Neurosci. 33, 16459-16470
   Abstract »    Full Text »    PDF »
Titration of Syntaxin1 in Mammalian Synapses Reveals Multiple Roles in Vesicle Docking, Priming, and Release Probability.
M. Arancillo, S.-W. Min, S. Gerber, A. Munster-Wandowski, Y.-J. Wu, M. Herman, T. Trimbuch, J.-C. Rah, G. Ahnert-Hilger, D. Riedel, et al. (2013)
J. Neurosci. 33, 16698-16714
   Abstract »    Full Text »    PDF »
Synaptotagmin Interaction with SNAP-25 Governs Vesicle Docking, Priming, and Fusion Triggering.
R. Mohrmann, H. de Wit, E. Connell, P. S. Pinheiro, C. Leese, D. Bruns, B. Davletov, M. Verhage, and J. B. Sorensen (2013)
J. Neurosci. 33, 14417-14430
   Abstract »    Full Text »    PDF »
X-Linked Intellectual Disability-Associated Mutations in Synaptophysin Disrupt Synaptobrevin II Retrieval.
S. L. Gordon and M. A. Cousin (2013)
J. Neurosci. 33, 13695-13700
   Abstract »    Full Text »    PDF »
Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ.
A. Pertsinidis, K. Mukherjee, M. Sharma, Z. P. Pang, S. R. Park, Y. Zhang, A. T. Brunger, T. C. Sudhof, and S. Chu (2013)
PNAS 110, E2812-E2820
   Abstract »    Full Text »    PDF »
Evidence for a radial SNARE super-complex mediating neurotransmitter release at the Drosophila neuromuscular junction.
A. Megighian, M. Zordan, S. Pantano, M. Scorzeto, M. Rigoni, D. Zanini, O. Rossetto, and C. Montecucco (2013)
J. Cell Sci. 126, 3134-3140
   Abstract »    Full Text »    PDF »
A dual role of SNAP-25 as carrier and guardian of synaptic transmission.
G. Kochlamazashvili and V. Haucke (2013)
EMBO Rep. 14, 579-580
   Full Text »    PDF »
Munc18-1 Protein Molecules Move between Membrane Molecular Depots Distinct from Vesicle Docking Sites.
A. M. Smyth, L. Yang, K. J. Martin, C. Hamilton, W. Lu, M. A. Cousin, C. Rickman, and R. R. Duncan (2013)
J. Biol. Chem. 288, 5102-5113
   Abstract »    Full Text »    PDF »
Membrane-Proximal Tryptophans of Synaptobrevin II Stabilize Priming of Secretory Vesicles.
M. Borisovska, Y. N. Schwarz, M. Dhara, A. Yarzagaray, S. Hugo, D. Narzi, S. W. I. Siu, J. Kesavan, R. Mohrmann, R. A. Bockmann, et al. (2012)
J. Neurosci. 32, 15983-15997
   Abstract »    Full Text »    PDF »
Function suggests nano-structure: electrophysiology supports that granule membranes play dice.
I. Hammel and I. Meilijson (2012)
J R Soc Interface 9, 2516-2526
   Abstract »    Full Text »    PDF »
Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis.
H. Kasai, N. Takahashi, and H. Tokumaru (2012)
Physiol Rev 92, 1915-1964
   Abstract »    Full Text »    PDF »
Adhesion energy can regulate vesicle fusion and stabilize partially fused states.
R. Long, C.-Y. Hui, A. Jagota, and M. Bykhovskaia (2012)
J R Soc Interface 9, 1555-1567
   Abstract »    Full Text »    PDF »
Porosome: the secretory portal.
B. P. Jena (2012)
Experimental Biology and Medicine 237, 748-757
   Abstract »    Full Text »    PDF »
Energetics of stalk intermediates in membrane fusion are controlled by lipid composition.
S. Aeffner, T. Reusch, B. Weinhausen, and T. Salditt (2012)
PNAS 109, E1609-E1618
   Abstract »    Full Text »    PDF »
SNARE Proteins: One to Fuse and Three to Keep the Nascent Fusion Pore Open.
L. Shi, Q.-T. Shen, A. Kiel, J. Wang, H.-W. Wang, T. J. Melia, J. E. Rothman, and F. Pincet (2012)
Science 335, 1355-1359
   Abstract »    Full Text »    PDF »
New Insights Into Molecular Players Involved in Neurotransmitter Release.
P. Ariel and T. A. Ryan (2012)
Physiology 27, 15-24
   Abstract »    Full Text »    PDF »
Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses.
R. Sinha, S. Ahmed, R. Jahn, and J. Klingauf (2011)
PNAS 108, 14318-14323
   Abstract »    Full Text »    PDF »
Counting the SNAREs needed for membrane fusion.
G. van den Bogaart and R. Jahn (2011)
J Mol Cell Biol 3, 204-205
   Abstract »    Full Text »    PDF »
Insights into the molecular organization of the neuron by cryo-electron tomography.
R. Fernandez-Busnadiego, N. Schrod, Z. Kochovski, S. Asano, D. Vanhecke, W. Baumeister, and V. Lucic (2011)
Microscopy (Tokyo) 60, S137-S148
   Abstract »    Full Text »    PDF »
Transport of the Major Myelin Proteolipid Protein Is Directed by VAMP3 and VAMP7.
A. Feldmann, J. Amphornrat, M. Schonherr, C. Winterstein, W. Mobius, T. Ruhwedel, L. Danglot, K.-A. Nave, T. Galli, D. Bruns, et al. (2011)
J. Neurosci. 31, 5659-5672
   Abstract »    Full Text »    PDF »
Single secretory granules of live cells recruit syntaxin-1 and synaptosomal associated protein 25 (SNAP-25) in large copy numbers.
M. K. Knowles, S. Barg, L. Wan, M. Midorikawa, X. Chen, and W. Almers (2010)
PNAS 107, 20810-20815
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882