Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 330 (6004): 635-641

Copyright © 2010 by the American Association for the Advancement of Science

Structure of a Eukaryotic CLC Transporter Defines an Intermediate State in the Transport Cycle

Liang Feng, Ernest B. Campbell, Yichun Hsiung, Roderick MacKinnon*

Abstract: CLC proteins transport chloride (Cl) ions across cell membranes to control the electrical potential of muscle cells, transfer electrolytes across epithelia, and control the pH and electrolyte composition of intracellular organelles. Some members of this protein family are Cl ion channels, whereas others are secondary active transporters that exchange Cl ions and protons (H+) with a 2:1 stoichiometry. We have determined the structure of a eukaryotic CLC transporter at 3.5 angstrom resolution. Cytoplasmic cystathionine beta-synthase (CBS) domains are strategically positioned to regulate the ion-transport pathway, and many disease-causing mutations in human CLCs reside on the CBS-transmembrane interface. Comparison with prokaryotic CLC shows that a gating glutamate residue changes conformation and suggests a basis for 2:1 Cl/H+ exchange and a simple mechanistic connection between CLC channels and transporters.

Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.

* To whom correspondence should be addressed. E-mail: mackinn{at}rockefeller.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Water access points and hydration pathways in CLC H+/Cl- transporters.
W. Han, R. C. Cheng, M. C. Maduke, and E. Tajkhorshid (2014)
PNAS 111, 1819-1824
   Abstract »    Full Text »    PDF »
The Voltage-Gated Anion Channels Encoded by clh-3 Regulate Egg Laying in C. elegans by Modulating Motor Neuron Excitability.
R. Branicky, H. Miyazaki, K. Strange, and W. R. Schafer (2014)
J. Neurosci. 34, 764-775
   Abstract »    Full Text »    PDF »
A missense mutation accelerating the gating of the lysosomal Cl-/H+-exchanger ClC-7/Ostm1 causes osteopetrosis with gingival hamartomas in cattle.
A. Sartelet, T. Stauber, W. Coppieters, C. F. Ludwig, C. Fasquelle, T. Druet, Z. Zhang, N. Ahariz, N. Cambisano, T. J. Jentsch, et al. (2014)
Dis. Model. Mech. 7, 119-128
   Abstract »    Full Text »    PDF »
A single point mutation reveals gating of the human ClC-5 Cl-/H+ antiporter.
S. De Stefano, M. Pusch, and G. Zifarelli (2013)
J. Physiol. 591, 5879-5893
   Abstract »    Full Text »    PDF »
Common Gating of Both CLC Transporter Subunits Underlies Voltage-dependent Activation of the 2Cl-/1H+ Exchanger ClC-7/Ostm1.
C. F. Ludwig, F. Ullrich, L. Leisle, T. Stauber, and T. J. Jentsch (2013)
J. Biol. Chem. 288, 28611-28619
   Abstract »    Full Text »    PDF »
The Divergence, Actions, Roles, and Relatives of Sodium-Coupled Bicarbonate Transporters.
M. D. Parker and W. F. Boron (2013)
Physiol Rev 93, 803-959
   Abstract »    Full Text »    PDF »
Functional characterization of a ClC transporter by solid-supported membrane electrophysiology.
J. Garcia-Celma, A. Szydelko, and R. Dutzler (2013)
J. Gen. Physiol. 141, 479-491
   Abstract »    Full Text »    PDF »
Comparative Analysis of 126 Cyanobacterial Genomes Reveals Evidence of Functional Diversity Among Homologs of the Redox-Regulated CP12 Protein.
D. N. Stanley, C. A. Raines, and C. A. Kerfeld (2013)
Plant Physiology 161, 824-835
   Abstract »    Full Text »    PDF »
Crystal Structure of the Calcium Release-Activated Calcium Channel Orai.
X. Hou, L. Pedi, M. M. Diver, and S. B. Long (2012)
Science 338, 1308-1313
   Abstract »    Full Text »    PDF »
Nonequilibrium Gating of CFTR on an Equilibrium Theme.
K.-Y. Jih and T.-C. Hwang (2012)
Physiology 27, 351-361
   Abstract »    Full Text »    PDF »
Dissecting a regulatory calcium-binding site of CLC-K kidney chloride channels.
A. Gradogna, C. Fenollar-Ferrer, L. R. Forrest, and M. Pusch (2012)
J. Gen. Physiol. 140, 681-696
   Abstract »    Full Text »    PDF »
Fluoride resistance and transport by riboswitch-controlled CLC antiporters.
R. B. Stockbridge, H.-H. Lim, R. Otten, C. Williams, T. Shane, Z. Weinberg, and C. Miller (2012)
PNAS 109, 15289-15294
   Abstract »    Full Text »    PDF »
Sequential interaction of chloride and proton ions with the fast gate steer the voltage-dependent gating in ClC-2 chloride channels.
J. E. Sanchez-Rodriguez, J. A. De Santiago-Castillo, J. A. Contreras-Vite, P. G. Nieto-Delgado, A. Castro-Chong, and J. Arreola (2012)
J. Physiol. 590, 4239-4253
   Abstract »    Full Text »    PDF »
Disease-causing mutations C277R and C277Y modify gating of human ClC-1 chloride channels in myotonia congenita.
S. Weinberger, D. Wojciechowski, D. Sternberg, F. Lehmann-Horn, K. Jurkat-Rott, T. Becher, B. Begemann, C. Fahlke, and M. Fischer (2012)
J. Physiol. 590, 3449-3464
   Abstract »    Full Text »    PDF »
Intracellular {beta}-Nicotinamide Adenine Dinucleotide Inhibits the Skeletal Muscle ClC-1 Chloride Channel.
B. Bennetts, Y. Yu, T.-Y. Chen, and M. W. Parker (2012)
J. Biol. Chem. 287, 25808-25820
   Abstract »    Full Text »    PDF »
Molecular mechanism of proton transport in CLC Cl-/H+ exchange transporters.
L. Feng, E. B. Campbell, and R. MacKinnon (2012)
PNAS 109, 11699-11704
   Abstract »    Full Text »    PDF »
Glutamate 268 Regulates Transport Probability of the Anion/Proton Exchanger ClC-5.
M. Grieschat and A. K. Alekov (2012)
J. Biol. Chem. 287, 8101-8109
   Abstract »    Full Text »    PDF »
Solute Carrier Family 26 Member a2 (Slc26a2) Protein Functions as an Electroneutral SOFormula/OH-/Cl- Exchanger Regulated by Extracellular Cl-.
E. Ohana, N. Shcheynikov, M. Park, and S. Muallem (2012)
J. Biol. Chem. 287, 5122-5132
   Abstract »    Full Text »    PDF »
Mechanism of proton/substrate coupling in the heptahelical lysosomal transporter cystinosin.
R. Ruivo, G. C. Bellenchi, X. Chen, G. Zifarelli, C. Sagne, C. Debacker, M. Pusch, S. Supplisson, and B. Gasnier (2012)
PNAS 109, E210-E217
   Abstract »    Full Text »    PDF »
Crystal Structure of the Human Two-Pore Domain Potassium Channel K2P1.
A. N. Miller and S. B. Long (2012)
Science 335, 432-436
   Abstract »    Full Text »    PDF »
Extracellular Determinants of Anion Discrimination of the Cl-/H+ Antiporter Protein CLC-5.
S. De Stefano, M. Pusch, and G. Zifarelli (2011)
J. Biol. Chem. 286, 44134-44144
   Abstract »    Full Text »    PDF »
Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7).
Y. Bai, M. Li, and T.-C. Hwang (2011)
J. Gen. Physiol. 138, 495-507
   Abstract »    Full Text »    PDF »
Cystathionine {beta}-Synthase (CBS) Domains 1 and 2 Fulfill Different Roles in Ionic Strength Sensing of the ATP-binding Cassette (ABC) Transporter OpuA.
A. Karasawa, G. B. Erkens, R. P.- A. Berntsson, R. Otten, G. K. Schuurman-Wolters, F. A. A. Mulder, and B. Poolman (2011)
J. Biol. Chem. 286, 37280-37291
   Abstract »    Full Text »    PDF »
ClC-7 is a slowly voltage-gated 2Cl-/1H+-exchanger and requires Ostm1 for transport activity.
L. Leisle, C. F. Ludwig, F. A. Wagner, T. J. Jentsch, and T. Stauber (2011)
EMBO J. 30, 2140-2152
   Abstract »    Full Text »    PDF »
Binding of ATP to the CBS domains in the C-terminal region of CLC-1.
P.-Y. Tseng, W.-P. Yu, H.-Y. Liu, X.-D. Zhang, X. Zou, and T.-Y. Chen (2011)
J. Gen. Physiol. 137, 357-368
   Abstract »    Full Text »    PDF »
ATP Induces Conformational Changes in the Carboxyl-terminal Region of ClC-5.
L. Wellhauser, C. Luna-Chavez, C. D'Antonio, J. Tainer, and C. E. Bear (2011)
J. Biol. Chem. 286, 6733-6741
   Abstract »    Full Text »    PDF »
Determinants of coupled transport and uncoupled current by the electrogenic SLC26 transporters.
E. Ohana, N. Shcheynikov, D. Yang, I. So, and S. Muallem (2011)
J. Gen. Physiol. 137, 239-251
   Abstract »    Full Text »    PDF »
Charge Transport in the ClC-type Chloride-Proton Anti-porter from Escherichia coli.
G. Kieseritzky and E.-W. Knapp (2011)
J. Biol. Chem. 286, 2976-2986
   Abstract »    Full Text »    PDF »
Chloride channels take center stage in a muscular drama.
C. Fahlke (2011)
J. Gen. Physiol. 137, 17-19
   Full Text »    PDF »
The Tao of Chloride Transporter Structure.
J. A. Mindell (2010)
Science 330, 601-602
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882