Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 330 (6005): 783-788

Copyright © 2010 by the American Association for the Advancement of Science

Changing Face of Microglia

Manuel B. Graeber

Abstract: Microglia are resident brain cells that sense pathological tissue alterations. They can develop into brain macrophages and perform immunological functions. However, expression of immune proteins by microglia is not synonymous with inflammation, because these molecules can have central nervous system (CNS)–specific roles. Through their involvement in pain mechanisms, microglia also respond to external threats. Experimental studies support the idea that microglia have a role in the maintenance of synaptic integrity. Analogous to electricians, they are capable of removing defunct axon terminals, thereby helping neuronal connections to stay intact. Microglia in healthy CNS tissue do not qualify as macrophages, and their specific functions are beginning to be explored.

Brain and Mind Research Institute, University of Sydney, Camperdown, NSW 2050, Australia. E-mail: manuel{at}

Unexpected Benefits of Intermittent Hypoxia: Enhanced Respiratory and Nonrespiratory Motor Function.
E. A. Dale, F. Ben Mabrouk, and G. S. Mitchell (2014)
Physiology 29, 39-48
   Abstract »    Full Text »    PDF »
Intravenous Multipotent Adult Progenitor Cell Therapy Attenuates Activated Microglial/Macrophage Response and Improves Spatial Learning After Traumatic Brain Injury.
S. S. Bedi, R. Hetz, C. Thomas, P. Smith, A. B. Olsen, S. Williams, H. Xue, K. Aroom, K. Uray, J. Hamilton, et al. (2013)
Stem Cells Trans Med 2, 953-960
   Abstract »    Full Text »    PDF »
Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke.
T. Li, S. Pang, Y. Yu, X. Wu, J. Guo, and S. Zhang (2013)
Brain 136, 3578-3588
   Abstract »    Full Text »    PDF »
PP2 and piceatannol inhibit PrP106-126-induced iNOS activation mediated by CD36 in BV2 microglia.
S. Zhang, L. Yang, M. Kouadir, R. Tan, Y. Lu, J. Chang, B. Xu, X. Yin, X. Zhou, and D. Zhao (2013)
Acta Biochim Biophys Sin 45, 763-772
   Abstract »    Full Text »    PDF »
Specific Glial Functions Contribute to Schizophrenia Susceptibility.
A. Goudriaan, C. de Leeuw, S. Ripke, C. M. Hultman, P. Sklar, P. F. Sullivan, A. B. Smit, D. Posthuma, and M. H. G. Verheijen (2013)
Schizophr Bull
   Abstract »    Full Text »    PDF »
Chronic Stress Induced Remodeling of the Prefrontal Cortex: Structural Re-Organization of Microglia and the Inhibitory Effect of Minocycline.
M. Hinwood, R. J. Tynan, J. L. Charnley, S. B. Beynon, T. A. Day, and F. R. Walker (2013)
Cereb Cortex 23, 1784-1797
   Abstract »    Full Text »    PDF »
Rifampin inhibits Toll-like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain.
X. Wang, P. M. Grace, M. N. Pham, K. Cheng, K. A. Strand, C. Smith, J. Li, L. R. Watkins, and H. Yin (2013)
FASEB J 27, 2713-2722
   Abstract »    Full Text »    PDF »
Systemic LPS induces spinal inflammatory gene expression and impairs phrenic long-term facilitation following acute intermittent hypoxia.
A. G. Huxtable, S. M. C. Smith, S. Vinit, J. J. Watters, and G. S. Mitchell (2013)
J Appl Physiol 114, 879-887
   Abstract »    Full Text »    PDF »
The molecular profile of microglia under the influence of glioma.
W. Li and M. B. Graeber (2012)
Neuro Oncology 14, 958-978
   Abstract »    Full Text »    PDF »
Evidence that Microglia Mediate the Neurobiological Effects of Chronic Psychological Stress on the Medial Prefrontal Cortex.
M. Hinwood, J. Morandini, T. A. Day, and F. R. Walker (2012)
Cereb Cortex 22, 1442-1454
   Abstract »    Full Text »    PDF »
Imaging P2X4 Receptor Lateral Mobility in Microglia: REGULATION BY CALCIUM AND p38 MAPK.
E. Toulme and B. S. Khakh (2012)
J. Biol. Chem. 287, 14734-14748
   Abstract »    Full Text »    PDF »
Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism.
F. Antonucci, E. Turola, L. Riganti, M. Caleo, M. Gabrielli, C. Perrotta, L. Novellino, E. Clementi, P. Giussani, P. Viani, et al. (2012)
EMBO J. 31, 1231-1240
   Abstract »    Full Text »    PDF »
Neurological diseases and pain.
D. Borsook (2012)
Brain 135, 320-344
   Abstract »    Full Text »    PDF »
Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis.
F. Leuschner, P. J. Rauch, T. Ueno, R. Gorbatov, B. Marinelli, W. W. Lee, P. Dutta, Y. Wei, C. Robbins, Y. Iwamoto, et al. (2012)
J. Exp. Med. 209, 123-137
   Abstract »    Full Text »    PDF »
Psychogenic dystonia and peripheral trauma.
J. A. Van Gerpen, T. Butler, J. S. Hawley, and W. J. Weiner (2011)
Neurology 77, 2071-2072
   Full Text »    PDF »
Anatomy of Prostaglandin Signals.
N. Stella (2011)
Science 334, 768-769
   Abstract »    Full Text »    PDF »
Synaptic Pruning by Microglia Is Necessary for Normal Brain Development.
R. C. Paolicelli, G. Bolasco, F. Pagani, L. Maggi, M. Scianni, P. Panzanelli, M. Giustetto, T. A. Ferreira, E. Guiducci, L. Dumas, et al. (2011)
Science 333, 1456-1458
   Abstract »    Full Text »    PDF »
Exploring the Neuroimmunopharmacology of Opioids: An Integrative Review of Mechanisms of Central Immune Signaling and Their Implications for Opioid Analgesia.
M. R. Hutchinson, Y. Shavit, P. M. Grace, K. C. Rice, S. F. Maier, and L. R. Watkins (2011)
Pharmacol. Rev. 63, 772-810
   Abstract »    Full Text »    PDF »
Gene therapy for leukodystrophies.
A. Biffi, P. Aubourg, and N. Cartier (2011)
Hum. Mol. Genet.
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882