Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 330 (6006): 971-974

Copyright © 2010 by the American Association for the Advancement of Science

Optogenetic Control of Cardiac Function

Aristides B. Arrenberg,1,3 Didier Y. R. Stainier,2,* Herwig Baier,1 Jan Huisken2,4

Abstract: The cardiac pacemaker controls the rhythmicity of heart contractions and can be substituted by a battery-operated device as a last resort. We created a genetically encoded, optically controlled pacemaker by expressing halorhodopsin and channelrhodopsin in zebrafish cardiomyocytes. Using patterned illumination in a selective plane illumination microscope, we located the pacemaker and simulated tachycardia, bradycardia, atrioventricular blocks, and cardiac arrest. The pacemaker converges to the sinoatrial region during development and comprises fewer than a dozen cells by the time the heart loops. Perturbation of the activity of these cells was entirely reversible, demonstrating the resilience of the endogenous pacemaker. Our studies combine optogenetics and light-sheet microscopy to reveal the emergence of organ function during development.

1 Department of Physiology, University of California, San Francisco, CA 94158, USA.
2 Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
3 Institute of Biology 1, University of Freiburg, 79104 Freiburg, Germany.
4 Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.

* To whom correspondence should be addressed. E-mail: didier.stainier{at}ucsf.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins.
U. Nussinovitch, R. Shinnawi, and L. Gepstein (2014)
Cardiovasc Res 102, 176-187
   Abstract »    Full Text »    PDF »
Biomedically relevant circuit-design strategies in mammalian synthetic biology.
W. Bacchus, D. Aubel, and M. Fussenegger (2014)
Mol Syst Biol 9, 691
   Abstract »    Full Text »    PDF »
Pulse propagation by a capacitive mechanism drives embryonic blood flow.
H. Anton, S. Harlepp, C. Ramspacher, D. Wu, F. Monduc, S. Bhat, M. Liebling, C. Paoletti, G. Charvin, J. B. Freund, et al. (2013)
Development 140, 4426-4434
   Abstract »    Full Text »    PDF »
Optogenetic Control of Fly Optomotor Responses.
V. Haikala, M. Joesch, A. Borst, and A. S. Mauss (2013)
J. Neurosci. 33, 13927-13934
   Abstract »    Full Text »    PDF »
Imaging Morphogenesis: Technological Advances and Biological Insights.
P. J. Keller (2013)
Science 340, 1234168
   Abstract »    Full Text »    PDF »
Cardiac optogenetics.
E. Entcheva (2013)
Am J Physiol Heart Circ Physiol 304, H1179-H1191
   Abstract »    Full Text »    PDF »
Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope.
A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken (2012)
Development 139, 3242-3247
   Abstract »    Full Text »    PDF »
Optical Imaging of Voltage and Calcium in Cardiac Cells & Tissues.
T. J. Herron, P. Lee, and J. Jalife (2012)
Circ. Res. 110, 609-623
   Abstract »    Full Text »    PDF »
Optical Pacing of the Heart: The Long Way to Enlightenment.
P. Sasse (2011)
Circ Arrhythm Electrophysiol 4, 598-600
   Full Text »    PDF »
Stimulating Cardiac Muscle by Light: Cardiac Optogenetics by Cell Delivery.
Z. Jia, V. Valiunas, Z. Lu, H. Bien, H. Liu, H.-Z. Wang, B. Rosati, P. R. Brink, I. S. Cohen, and E. Entcheva (2011)
Circ Arrhythm Electrophysiol 4, 753-760
   Abstract »    Full Text »    PDF »
Zebrafish as a model to study cardiac development and human cardiac disease.
J. Bakkers (2011)
Cardiovasc Res 91, 279-288
   Abstract »    Full Text »    PDF »
Establishment of the mouse ventricular conduction system.
L. Miquerol, S. Beyer, and R. G. Kelly (2011)
Cardiovasc Res 91, 232-242
   Abstract »    Full Text »    PDF »
Getting heart cells on the same wavelength: infrared triggering of Ca2+ transients in cardiac myocytes.
E. A. Sobie (2011)
J. Physiol. 589, 1243-1244
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882