Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 330 (6008): 1238-1240

Copyright © 2010 by the American Association for the Advancement of Science

Lynx1, a Cholinergic Brake, Limits Plasticity in Adult Visual Cortex

Hirofumi Morishita,1 Julie M. Miwa,2,3 Nathaniel Heintz,3 Takao K. Hensch1,4,*

Abstract: Experience-dependent brain plasticity typically declines after an early critical period during which circuits are established. Loss of plasticity with closure of the critical period limits improvement of function in adulthood, but the mechanisms that change the brain’s plasticity remain poorly understood. Here, we identified an increase in expression of Lynx1 protein in mice that prevented plasticity in the primary visual cortex late in life. Removal of this molecular brake enhanced nicotinic acetylcholine receptor signaling. Lynx1 expression thus maintains stability of mature cortical networks in the presence of cholinergic innervation. The results suggest that modulating the balance between excitatory and inhibitory circuits reactivates visual plasticity and may present a therapeutic target.

1 FM Kirby Neurobiology Center, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.
2 Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
3 Howard Hughes Medical Institute Laboratory of Molecular Biology, Rockefeller University, New York, NY 10065, USA.
4 Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.

* To whom correspondence should be addressed. E-mail: takao.hensch{at}childrens.harvard.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke-induced impairments of plasticity.
F. Greifzu, J. Pielecka-Fortuna, E. Kalogeraki, K. Krempler, P. D. Favaro, O. M. Schluter, and S. Lowel (2014)
PNAS 111, 1150-1155
   Abstract »    Full Text »    PDF »
Environment and Brain Plasticity: Towards an Endogenous Pharmacotherapy.
A. Sale, N. Berardi, and L. Maffei (2014)
Physiol Rev 94, 189-234
   Abstract »    Full Text »    PDF »
Visual Acuity Development and Plasticity in the Absence of Sensory Experience.
E. Kang, S. Durand, J. J. LeBlanc, T. K. Hensch, C. Chen, and M. Fagiolini (2013)
J. Neurosci. 33, 17789-17796
   Abstract »    Full Text »    PDF »
Refining Cortical Representation of Sound Azimuths by Auditory Discrimination Training.
Y. Zhang, Y. Zhao, X. Zhu, X. Sun, and X. Zhou (2013)
J. Neurosci. 33, 9693-9698
   Abstract »    Full Text »    PDF »
Water-soluble LYNX1 Residues Important for Interaction with Muscle-type and/or Neuronal Nicotinic Receptors.
E. N. Lyukmanova, M. A. Shulepko, S. L. Buldakova, I. E. Kasheverov, Z. O. Shenkarev, R. V. Reshetnikov, S. Y. Filkin, D. S. Kudryavtsev, L. O. Ojomoko, E. V. Kryukova, et al. (2013)
J. Biol. Chem. 288, 15888-15899
   Abstract »    Full Text »    PDF »
Visual experience and subsequent sleep induce sequential plastic changes in putative inhibitory and excitatory cortical neurons.
S. J. Aton, C. Broussard, M. Dumoulin, J. Seibt, A. Watson, T. Coleman, and M. G. Frank (2013)
PNAS 110, 3101-3106
   Abstract »    Full Text »    PDF »
Homeoprotein Signaling in Development, Health, and Disease: A Shaking of Dogmas Offers Challenges and Promises from Bench to Bed.
J. Spatazza, E. Di Lullo, A. Joliot, E. Dupont, K. L. Moya, and A. Prochiantz (2013)
Pharmacol. Rev. 65, 90-104
   Abstract »    Full Text »    PDF »
Effects of Digesting Chondroitin Sulfate Proteoglycans on Plasticity in Cat Primary Visual Cortex.
V. Vorobyov, J. C. F. Kwok, J. W. Fawcett, and F. Sengpiel (2013)
J. Neurosci. 33, 234-243
   Abstract »    Full Text »    PDF »
Molecular Mechanisms Underlying Behaviors Related to Nicotine Addiction.
M. R. Picciotto and P. J. Kenny (2013)
Cold Spring Harb Perspect Med 3, a012112
   Abstract »    Full Text »    PDF »
Alpha-1 Adrenergic Receptors Gate Rapid Orientation-Specific Reduction in Visual Discrimination.
M. Trevino, S. Frey, and G. Kohr (2012)
Cereb Cortex 22, 2529-2541
   Abstract »    Full Text »    PDF »
The ly-6 protein, lynx1, is an endogenous inhibitor of nicotinic signaling in airway epithelium.
X. W. Fu, S. S. Rekow, and E. R. Spindel (2012)
Am J Physiol Lung Cell Mol Physiol 303, L661-L668
   Abstract »    Full Text »    PDF »
Treatment of Neurodevelopmental Disorders in Adulthood.
E. Castren, Y. Elgersma, L. Maffei, and R. Hagerman (2012)
J. Neurosci. 32, 14074-14079
   Abstract »    Full Text »    PDF »
Experience-dependent expression of NPAS4 regulates plasticity in adult visual cortex.
J. F. Maya-Vetencourt, E. Tiraboschi, D. Greco, L. Restani, C. Cerri, P. Auvinen, L. Maffei, and E. Castren (2012)
J. Physiol. 590, 4777-4787
   Abstract »    Full Text »    PDF »
Response feedback triggers long-term consolidation of perceptual learning independently of performance gains.
J. Dobres and T. Watanabe (2012)
J Vis 12, 9
   Abstract »    Full Text »    PDF »
Optimizing Cholinergic Tone Through Lynx Modulators of Nicotinic Receptors: Implications for Plasticity and Nicotine Addiction.
J. M. Miwa, H. A. Lester, and A. Walz (2012)
Physiology 27, 187-199
   Abstract »    Full Text »    PDF »
Otx2 Binding to Perineuronal Nets Persistently Regulates Plasticity in the Mature Visual Cortex.
M. Beurdeley, J. Spatazza, H. H. C. Lee, S. Sugiyama, C. Bernard, A. A. Di Nardo, T. K. Hensch, and A. Prochiantz (2012)
J. Neurosci. 32, 9429-9437
   Abstract »    Full Text »    PDF »
Glutamatergic Synapse Formation is Promoted by {alpha}7-Containing Nicotinic Acetylcholine Receptors.
A. F. Lozada, X. Wang, N. V. Gounko, K. A. Massey, J. Duan, Z. Liu, and D. K. Berg (2012)
J. Neurosci. 32, 7651-7661
   Abstract »    Full Text »    PDF »
Epilepsy in patients with a brain tumour: focal epilepsy requires focused treatment.
M. de Groot, J. C. Reijneveld, E. Aronica, and J. J. Heimans (2012)
Brain 135, 1002-1016
   Abstract »    Full Text »    PDF »
{alpha}4* Nicotinic Acetylcholine Receptors Modulate Experience-Based Cortical Depression in the Adult Mouse Somatosensory Cortex.
C. E. Brown, D. Sweetnam, M. Beange, P. C. Nahirney, and R. Nashmi (2012)
J. Neurosci. 32, 1207-1219
   Abstract »    Full Text »    PDF »
Presynaptic Gating of Postsynaptically Expressed Plasticity at Mature Thalamocortical Synapses.
J. A. Blundon, I. T. Bayazitov, and S. S. Zakharenko (2011)
J. Neurosci. 31, 16012-16025
   Abstract »    Full Text »    PDF »
{alpha}7-Containing and Non-{alpha}7-Containing Nicotinic Receptors Respond Differently to Spillover of Acetylcholine.
D. Stanchev and P. B. Sargent (2011)
J. Neurosci. 31, 14920-14930
   Abstract »    Full Text »    PDF »
Lynx for Braking Plasticity.
M. J. Higley and S. M. Strittmatter (2010)
Science 330, 1189-1190
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882