Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 330 (6009): 1393-1397

Copyright © 2010 by the American Association for the Advancement of Science

Arabidopsis Type I Metacaspases Control Cell Death

Nuria S. Coll,1 Dominique Vercammen,2,* Andrea Smidler,1 Charles Clover,1,{dagger} Frank Van Breusegem,2 Jeffery L. Dangl,1,3,4,{ddagger} Petra Epple1,{ddagger}

Abstract: Metacaspases are distant relatives of animal caspases found in protozoa, fungi, and plants. Limited experimental data exist defining their function(s), despite their discovery by homology modeling a decade ago. We demonstrated that two type I metacaspases, AtMC1 and AtMC2, antagonistically control programmed cell death in Arabidopsis. AtMC1 is a positive regulator of cell death and requires conserved caspase-like putative catalytic residues for its function. AtMC2 negatively regulates cell death. This function is independent of the putative catalytic residues. Manipulation of the Arabidopsis type I metacaspase regulatory module can nearly eliminate the hypersensitive cell death response (HR) activated by plant intracellular immune receptors. This does not lead to enhanced pathogen proliferation, decoupling HR from restriction of pathogen growth.

1 Department of Biology, 108 Coker Hall, University of North Carolina (UNC), CB 3280, Chapel Hill, NC 27599–3280, USA.
2 VIB Department of Plant Systems Biology and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium.
3 Curriculum in Genetics and Molecular Biology and Department of Microbiology and Immunology, UNC, Chapel Hill, NC 27599, USA.
4 Carolina Center for Genome Sciences, UNC, Chapel Hill, NC 27599, USA.

* Present address: Innogenetics, Technologiepark 6, 9052 Ghent, Belgium.

{dagger} Present address: Department of Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.

{ddagger} To whom correspondence should be addressed. E-mail: pepple{at}email.unc.edu (P.E.); dangl{at}email.unc.edu (J.L.D.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Membrane trafficking and autophagy in pathogen-triggered cell death and immunity.
O.-K. Teh and D. Hofius (2014)
J. Exp. Bot. 65, 1297-1312
   Abstract »    Full Text »    PDF »
The Rice TAL Effector-Dependent Resistance Protein XA10 Triggers Cell Death and Calcium Depletion in the Endoplasmic Reticulum.
D. Tian, J. Wang, X. Zeng, K. Gu, C. Qiu, X. Yang, Z. Zhou, M. Goh, Y. Luo, M. Murata-Hori, et al. (2014)
PLANT CELL 26, 497-515
   Abstract »    Full Text »    PDF »
Catalase and NO CATALASE ACTIVITY1 Promote Autophagy-Dependent Cell Death in Arabidopsis.
T. Hackenberg, T. Juul, A. Auzina, S. Gwizdz, A. Malolepszy, K. Van Der Kelen, S. Dam, S. Bressendorff, A. Lorentzen, P. Roepstorff, et al. (2013)
PLANT CELL 25, 4616-4626
   Abstract »    Full Text »    PDF »
LESION SIMULATING DISEASE1 Interacts with Catalases to Regulate Hypersensitive Cell Death in Arabidopsis.
Y. Li, L. Chen, J. Mu, and J. Zuo (2013)
Plant Physiology 163, 1059-1070
   Abstract »    Full Text »    PDF »
The Arabidopsis METACASPASE9 Degradome.
L. Tsiatsiani, E. Timmerman, P.-J. De Bock, D. Vercammen, S. Stael, B. van de Cotte, A. Staes, M. Goethals, T. Beunens, P. Van Damme, et al. (2013)
PLANT CELL 25, 2831-2847
   Abstract »    Full Text »    PDF »
LESION SIMULATING DISEASE1, ENHANCED DISEASE SUSCEPTIBILITY1, and PHYTOALEXIN DEFICIENT4 Conditionally Regulate Cellular Signaling Homeostasis, Photosynthesis, Water Use Efficiency, and Seed Yield in Arabidopsis.
W. Wituszynska, I. Slesak, S. Vanderauwera, M. Szechynska-Hebda, A. Kornas, K. Van Der Kelen, P. Muhlenbock, B. Karpinska, S. Mackowski, F. Van Breusegem, et al. (2013)
Plant Physiology 161, 1795-1805
   Abstract »    Full Text »    PDF »
14-3-3 Regulates 1-Aminocyclopropane-1-Carboxylate Synthase Protein Turnover in Arabidopsis.
G. M. Yoon and J. J. Kieber (2013)
PLANT CELL 25, 1016-1028
   Abstract »    Full Text »    PDF »
An Arabidopsis Cell Growth Defect Factor-Related Protein, CRS, Promotes Plant Senescence by Increasing the Production of Hydrogen Peroxide.
M. H. Cui, S. H. Ok, K. S. Yoo, K. W. Jung, S. D. Yoo, and J. S. Shin (2013)
Plant Cell Physiol. 54, 155-167
   Abstract »    Full Text »    PDF »
Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity.
K. H. Sohn, R. K. Hughes, S. J. Piquerez, J. D. G. Jones, and M. J. Banfield (2012)
PNAS 109, 16371-16376
   Abstract »    Full Text »    PDF »
Crystal structure of a Trypanosoma brucei metacaspase.
K. McLuskey, J. Rudolf, W. R. Proto, N. W. Isaacs, G. H. Coombs, C. X. Moss, and J. C. Mottram (2012)
PNAS 109, 7469-7474
   Abstract »    Full Text »    PDF »
Non-apoptotic programmed cell death with paraptotic-like features in bleomycin-treated plant cells is suppressed by inhibition of ATM/ATR pathways or NtE2F overexpression.
O. Smetana, J. Siroky, G. Houlne, Z. Opatrny, and M.-E. Chaboute (2012)
J. Exp. Bot. 63, 2631-2644
   Abstract »    Full Text »    PDF »
NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley.
M. Rodriguez-Serrano, I. Barany, D. Prem, M.-J. Coronado, M. C. Risueno, and P. S. Testillano (2012)
J. Exp. Bot. 63, 2007-2024
   Abstract »    Full Text »    PDF »
The MADS29 Transcription Factor Regulates the Degradation of the Nucellus and the Nucellar Projection during Rice Seed Development.
L.-L. Yin and H.-W. Xue (2012)
PLANT CELL 24, 1049-1065
   Abstract »    Full Text »    PDF »
Xylem cell death: emerging understanding of regulation and function.
B. Bollhoner, J. Prestele, and H. Tuominen (2012)
J. Exp. Bot. 63, 1081-1094
   Abstract »    Full Text »    PDF »
Trypanosoma brucei Metacaspase 4 Is a Pseudopeptidase and a Virulence Factor.
W. R. Proto, E. Castanys-Munoz, A. Black, L. Tetley, C. X. Moss, L. Juliano, G. H. Coombs, and J. C. Mottram (2011)
J. Biol. Chem. 286, 39914-39925
   Abstract »    Full Text »    PDF »
Perturbation of Polyamine Catabolism Can Strongly Affect Root Development and Xylem Differentiation.
A. Tisi, R. Federico, S. Moreno, S. Lucretti, P. N. Moschou, K. A. Roubelakis-Angelakis, R. Angelini, and A. Cona (2011)
Plant Physiology 157, 200-215
   Abstract »    Full Text »    PDF »
High-Resolution Temporal Profiling of Transcripts during Arabidopsis Leaf Senescence Reveals a Distinct Chronology of Processes and Regulation.
E. Breeze, E. Harrison, S. McHattie, L. Hughes, R. Hickman, C. Hill, S. Kiddle, Y.-s. Kim, C. A. Penfold, D. Jenkins, et al. (2011)
PLANT CELL 23, 873-894
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882