Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 330 (6009): 1397-1400

Copyright © 2010 by the American Association for the Advancement of Science

An Antagonistic Pair of FT Homologs Mediates the Control of Flowering Time in Sugar Beet

Pierre A. Pin,1,2 Reyes Benlloch,1 Dominique Bonnet,3 Elisabeth Wremerth-Weich,2 Thomas Kraft,2 Jan J. L. Gielen,3 Ove Nilsson1,*

Abstract: Cultivated beets (Beta vulgaris ssp. vulgaris) are unable to form reproductive shoots during the first year of their life cycle. Flowering only occurs if plants get vernalized, that is, pass through the winter, and are subsequently exposed to an increasing day length (photoperiod) in spring. Here, we show that the regulation of flowering time in beets is controlled by the interplay of two paralogs of the FLOWERING LOCUS T (FT) gene in Arabidopsis that have evolved antagonistic functions. BvFT2 is functionally conserved with FT and essential for flowering. In contrast, BvFT1 represses flowering and its down-regulation is crucial for the vernalization response in beets. These data suggest that the beet has evolved a different strategy relative to Arabidopsis and cereals to regulate vernalization.

1 Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901-83 Umeå, Sweden.
2 Syngenta Seeds AB, Box 302, 261-23 Landskrona, Sweden.
3 Syngenta Seeds SAS, 12 Chemin de l’Hôbit, 31790 Saint-Sauveur, France.

* To whom correspondence should be addressed. E-mail: Ove.Nilsson{at}genfys.slu.se


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A dark-light transition triggers expression of the floral promoter CrFTL1 and downregulates CONSTANS-like genes in a short-day plant Chenopodium rubrum.
J. Drabešova, D. Chab, J. Kolař, K. Haškovcova, and H. Štorchova (2014)
J. Exp. Bot. 65, 2137-2146
   Abstract »    Full Text »    PDF »
Differential Expression Patterns of Non-Symbiotic Hemoglobins in Sugar Beet (Beta vulgaris ssp. vulgaris).
N. Leiva-Eriksson, P. A. Pin, T. Kraft, J. C. Dohm, A. E. Minoche, H. Himmelbauer, and L. Bulow (2014)
Plant Cell Physiol. 55, 834-844
   Abstract »    Full Text »    PDF »
Arguments in the evo-devo debate: say it with flowers!.
S. D. Pina, E. Souer, and R. Koes (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Structural Features Determining Flower-Promoting Activity of Arabidopsis FLOWERING LOCUS T.
W. W. H. Ho and D. Weigel (2014)
PLANT CELL 26, 552-564
   Abstract »    Full Text »    PDF »
Interaction of Photoperiod and Vernalization Determines Flowering Time of Brachypodium distachyon.
T. S. Ream, D. P. Woods, C. J. Schwartz, C. P. Sanabria, J. A. Mahoy, E. M. Walters, H. F. Kaeppler, and R. M. Amasino (2014)
Plant Physiology 164, 694-709
   Abstract »    Full Text »    PDF »
The regulation of seasonal flowering in the Rosaceae.
T. Kurokura, N. Mimida, N. H. Battey, and T. Hytonen (2013)
J. Exp. Bot. 64, 4131-4141
   Abstract »    Full Text »    PDF »
Regulation of FLOWERING LOCUS T by a MicroRNA in Brachypodium distachyon.
L. Wu, D. Liu, J. Wu, R. Zhang, Z. Qin, D. Liu, A. Li, D. Fu, W. Zhai, and L. Mao (2013)
PLANT CELL 25, 4363-4377
   Abstract »    Full Text »    PDF »
The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums.
Y. Higuchi, T. Narumi, A. Oda, Y. Nakano, K. Sumitomo, S. Fukai, and T. Hisamatsu (2013)
PNAS 110, 17137-17142
   Abstract »    Full Text »    PDF »
FLOWERING LOCUS T/TERMINAL FLOWER1-Like Genes Affect Growth Rhythm and Bud Set in Norway Spruce.
A. Karlgren, N. Gyllenstrand, D. Clapham, and U. Lagercrantz (2013)
Plant Physiology 163, 792-803
   Abstract »    Full Text »    PDF »
FT-Like NFT1 Gene May Play a Role in Flower Transition Induced by Heat Accumulation in Narcissus tazetta var. chinensis.
X.-F. Li, L.-Y. Jia, J. Xu, X.-J. Deng, Y. Wang, W. Zhang, X.-P. Zhang, Q. Fang, D.-M. Zhang, Y. Sun, et al. (2013)
Plant Cell Physiol. 54, 270-281
   Abstract »    Full Text »    PDF »
Interacting duplications, fluctuating selection, and convergence: the complex dynamics of flowering time evolution during sunflower domestication.
B. K. Blackman (2013)
J. Exp. Bot. 64, 421-431
   Abstract »    Full Text »    PDF »
Identification of differentially methylated regions during vernalization revealed a role for RNA methyltransferases in bolting.
C. Hebrard, M.-V. Trap-Gentil, C. Lafon-Placette, A. Delaunay, C. Joseph, M. Lefebvre, S. Barnes, and S. Maury (2013)
J. Exp. Bot. 64, 651-663
   Abstract »    Full Text »    PDF »
Florigenic and Antiflorigenic Signaling in Plants.
I. G. Matsoukas, A. J. Massiah, and B. Thomas (2012)
Plant Cell Physiol. 53, 1827-1842
   Abstract »    Full Text »    PDF »
Phosphatidylethanolamine Binding Is a Conserved Feature of Cyclotide-Membrane Interactions.
S. T. Henriques, Y.-H. Huang, M. A. R. B. Castanho, L. A. Bagatolli, S. Sonza, G. Tachedjian, N. L. Daly, and D. J. Craik (2012)
J. Biol. Chem. 287, 33629-33643
   Abstract »    Full Text »    PDF »
Transcript and metabolite signature of maize source leaves suggests a link between transitory starch to sucrose balance and the autonomous floral transition.
V. Coneva, D. Guevara, S. J. Rothstein, and J. Colasanti (2012)
J. Exp. Bot. 63, 5079-5092
   Abstract »    Full Text »    PDF »
Vernalization - a cold-induced epigenetic switch.
J. Song, A. Angel, M. Howard, and C. Dean (2012)
J. Cell Sci. 125, 3723-3731
   Abstract »    Full Text »    PDF »
Vernalization-mediated chromatin changes.
B. R. Zografos and S. Sung (2012)
J. Exp. Bot. 63, 4343-4348
   Abstract »    Full Text »    PDF »
CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums.
A. Oda, T. Narumi, T. Li, T. Kando, Y. Higuchi, K. Sumitomo, S. Fukai, and T. Hisamatsu (2012)
J. Exp. Bot. 63, 1461-1477
   Abstract »    Full Text »    PDF »
The Molecular Basis of Vernalization in Different Plant Groups.
T. S. Ream, D. P. Woods, and R. M. Amasino (2012)
Cold Spring Harb Symp Quant Biol 77, 105-115
   Abstract »    Full Text »    PDF »
June bloom in Maratea.
F. Parcy and J. U. Lohmann (2011)
Development 138, 4335-4340
   Abstract »    Full Text »    PDF »
Evolution of the PEBP Gene Family in Plants: Functional Diversification in Seed Plant Evolution.
A. Karlgren, N. Gyllenstrand, T. Kallman, J. F. Sundstrom, D. Moore, M. Lascoux, and U. Lagercrantz (2011)
Plant Physiology 156, 1967-1977
   Abstract »    Full Text »    PDF »
The Medicago FLOWERING LOCUS T Homolog, MtFTa1, Is a Key Regulator of Flowering Time.
R. E. Laurie, P. Diwadkar, M. Jaudal, L. Zhang, V. Hecht, J. Wen, M. Tadege, K. S. Mysore, J. Putterill, J. L. Weller, et al. (2011)
Plant Physiology 156, 2207-2224
   Abstract »    Full Text »    PDF »
FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar.
C.-Y. Hsu, J. P. Adams, H. Kim, K. No, C. Ma, S. H. Strauss, J. Drnevich, L. Vandervelde, J. D. Ellis, B. M. Rice, et al. (2011)
PNAS 108, 10756-10761
   Abstract »    Full Text »    PDF »
The FT-Like ZCN8 Gene Functions as a Floral Activator and Is Involved in Photoperiod Sensitivity in Maize.
X. Meng, M. G. Muszynski, and O. N. Danilevskaya (2011)
PLANT CELL 23, 942-960
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882