Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 331 (6016): 456-461

Copyright © 2011 by the American Association for the Advancement of Science

Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy

Daniel F. Egan,1 David B. Shackelford,1 Maria M. Mihaylova,1,2 Sara Gelino,4 Rebecca A. Kohnz,1 William Mair,1 Debbie S. Vasquez,1 Aashish Joshi,5 Dana M. Gwinn,1 Rebecca Taylor,1 John M. Asara,6 James Fitzpatrick,3 Andrew Dillin,1,2 Benoit Viollet,7 Mondira Kundu,5 Malene Hansen,4 Reuben J. Shaw1,2,*

Abstract: Adenosine monophosphate–activated protein kinase (AMPK) is a conserved sensor of intracellular energy activated in response to low nutrient availability and environmental stress. In a screen for conserved substrates of AMPK, we identified ULK1 and ULK2, mammalian orthologs of the yeast protein kinase Atg1, which is required for autophagy. Genetic analysis of AMPK or ULK1 in mammalian liver and Caenorhabditis elegans revealed a requirement for these kinases in autophagy. In mammals, loss of AMPK or ULK1 resulted in aberrant accumulation of the autophagy adaptor p62 and defective mitophagy. Reconstitution of ULK1-deficient cells with a mutant ULK1 that cannot be phosphorylated by AMPK revealed that such phosphorylation is required for mitochondrial homeostasis and cell survival during starvation. These findings uncover a conserved biochemical mechanism coupling nutrient status with autophagy and cell survival.

1 Molecular and Cell Biology Laboratory, Dulbecco Center for Cancer Research, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
2 Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
3 Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
4 Graduate School of Biomedical Sciences, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
5 Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA.
6 Division of Signal Transduction, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
7 Inserm, U1016, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.

* To whom correspondence should be addressed. E-mail: shaw{at}salk.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis.
G. Zadra, C. Photopoulos, S. Tyekucheva, P. Heidari, Q. P. Weng, G. Fedele, H. Liu, N. Scaglia, C. Priolo, E. Sicinska, et al. (2014)
EMBO Mol Med. 6, 519-538
   Abstract »    Full Text »    PDF »
AMP-activated Protein Kinase {alpha}2 Protects against Liver Injury from Metastasized Tumors via Reduced Glucose Deprivation-induced Oxidative Stress.
S.-L. Qiu, Z.-C. Xiao, C.-M. Piao, Y.-L. Xian, L.-X. Jia, Y.-F. Qi, J.-H. Han, Y.-y. Zhang, and J. Du (2014)
J. Biol. Chem. 289, 9449-9459
   Abstract »    Full Text »    PDF »
ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy.
W. Wu, W. Tian, Z. Hu, G. Chen, L. Huang, W. Li, X. Zhang, P. Xue, C. Zhou, L. Liu, et al. (2014)
EMBO Rep.
   Abstract »    Full Text »    PDF »
Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1.
A. Di Nardo, M. H. Wertz, E. Kwiatkowski, P. T. Tsai, J. D. Leech, E. Greene-Colozzi, J. Goto, P. Dilsiz, D. M. Talos, C. B. Clish, et al. (2014)
Hum. Mol. Genet.
   Abstract »    Full Text »    PDF »
AMPK: Regulating Energy Balance at the Cellular and Whole Body Levels.
D. G. Hardie and M. L. J. Ashford (2014)
Physiology 29, 99-107
   Abstract »    Full Text »    PDF »
Autophagy and thyroid carcinogenesis: genetic and epigenetic links.
F. Morani, R. Titone, L. Pagano, A. Galetto, O. Alabiso, G. Aimaretti, and C. Isidoro (2014)
Endocr. Relat. Cancer 21, R13-R29
   Abstract »    Full Text »    PDF »
Mammalian Target of Rapamycin Signaling in Cardiac Physiology and Disease.
S. Sciarretta, M. Volpe, and J. Sadoshima (2014)
Circ. Res. 114, 549-564
   Abstract »    Full Text »    PDF »
Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK.
X. Liu, R. R. Chhipa, S. Pooya, M. Wortman, S. Yachyshin, L. M. L. Chow, A. Kumar, X. Zhou, Y. Sun, B. Quinn, et al. (2014)
PNAS 111, E435-E444
   Abstract »    Full Text »    PDF »
Rheb and mammalian target of rapamycin in mitochondrial homoeostasis.
M. J. Groenewoud and F. J. T. Zwartkruis (2013)
Open Bio 3, 130185
   Abstract »    Full Text »    PDF »
Mechanism and Physiological Significance of Growth Factor-Related Autophagy.
T. Y. Li, S.-Y. Lin, and S.-C. Lin (2013)
Physiology 28, 423-431
   Abstract »    Full Text »    PDF »
Proximal Tubules Forget "Self-Eating" When They Meet Western Meals.
K. Inoki (2013)
J. Am. Soc. Nephrol. 24, 1711-1713
   Full Text »    PDF »
Glucose-starved Cells Do Not Engage in Prosurvival Autophagy.
S. Ramirez-Peinado, C. L. Leon-Annicchiarico, J. Galindo-Moreno, R. Iurlaro, A. Caro-Maldonado, J. H. M. Prehn, K. M. Ryan, and C. Munoz-Pinedo (2013)
J. Biol. Chem. 288, 30387-30398
   Abstract »    Full Text »    PDF »
WASH inhibits autophagy through suppression of Beclin 1 ubiquitination.
P. Xia, S. Wang, Y. Du, Z. Zhao, L. Shi, L. Sun, G. Huang, B. Ye, C. Li, Z. Dai, et al. (2013)
EMBO J. 32, 2685-2696
   Abstract »    Full Text »    PDF »
Epigenetic Regulation of Autophagy by the Methyltransferase G9a.
A. Artal-Martinez de Narvajas, T. S. Gomez, J.-S. Zhang, A. O. Mann, Y. Taoda, J. A. Gorman, M. Herreros-Villanueva, T. M. Gress, V. Ellenrieder, L. Bujanda, et al. (2013)
Mol. Cell. Biol. 33, 3983-3993
   Abstract »    Full Text »    PDF »
Autophagy in blood cancers: biological role and therapeutic implications.
A. Nencioni, M. Cea, F. Montecucco, V. D. Longo, F. Patrone, A. M. Carella, T. L. Holyoake, and G. V. Helgason (2013)
Haematologica 98, 1335-1343
   Abstract »    Full Text »    PDF »
Therapeutic Targeting of Autophagy in Disease: Biology and Pharmacology.
Y. Cheng, X. Ren, W. N. Hait, and J.-M. Yang (2013)
Pharmacol. Rev. 65, 1162-1197
   Abstract »    Full Text »    PDF »
Epigallocatechin Gallate (EGCG) Stimulates Autophagy in Vascular Endothelial Cells: A POTENTIAL ROLE FOR REDUCING LIPID ACCUMULATION.
H.-S. Kim, V. Montana, H.-J. Jang, V. Parpura, and J.-a. Kim (2013)
J. Biol. Chem. 288, 22693-22705
   Abstract »    Full Text »    PDF »
mTORC1 Phosphorylation Sites Encode Their Sensitivity to Starvation and Rapamycin.
S. A. Kang, M. E. Pacold, C. L. Cervantes, D. Lim, H. J. Lou, K. Ottina, N. S. Gray, B. E. Turk, M. B. Yaffe, and D. M. Sabatini (2013)
Science 341, 1236566
   Abstract »    Full Text »    PDF »
AMPK: A Target for Drugs and Natural Products With Effects on Both Diabetes and Cancer.
D. G. Hardie (2013)
Diabetes 62, 2164-2172
   Abstract »    Full Text »    PDF »
Ablation of Dihydroceramide Desaturase 1, a Therapeutic Target for the Treatment of Metabolic Diseases, Simultaneously Stimulates Anabolic and Catabolic Signaling.
M. M. Siddique, Y. Li, L. Wang, J. Ching, M. Mal, O. Ilkayeva, Y. J. Wu, B. H. Bay, and S. A. Summers (2013)
Mol. Cell. Biol. 33, 2353-2369
   Abstract »    Full Text »    PDF »
Tyrosine Kinase BMX Phosphorylates Phosphotyrosine-Primed Motif Mediating the Activation of Multiple Receptor Tyrosine Kinases.
S. Chen, X. Jiang, C. A. Gewinner, J. M. Asara, N. I. Simon, C. Cai, L. C. Cantley, and S. P. Balk (2013)
Science Signaling 6, ra40
   Abstract »    Full Text »    PDF »
Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress.
R. M. Young, D. Ackerman, Z. L. Quinn, A. Mancuso, M. Gruber, L. Liu, D. N. Giannoukos, E. Bobrovnikova-Marjon, J. A. Diehl, B. Keith, et al. (2013)
Genes & Dev. 27, 1115-1131
   Abstract »    Full Text »    PDF »
AMPK: A Contextual Oncogene or Tumor Suppressor?.
J. Liang and G. B. Mills (2013)
Cancer Res. 73, 2929-2935
   Abstract »    Full Text »    PDF »
Oxidative stress response elicited by mitochondrial dysfunction: Implication in the pathophysiology of aging.
C.-H. Wang, S.-B. Wu, Y.-T. Wu, and Y.-H. Wei (2013)
Experimental Biology and Medicine 238, 450-460
   Abstract »    Full Text »    PDF »
Role of autophagy in COPD skeletal muscle dysfunction.
S. N. A. Hussain and M. Sandri (2013)
J Appl Physiol 114, 1273-1281
   Abstract »    Full Text »    PDF »
Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy.
Y. Yang, W. Fiskus, B. Yong, P. Atadja, Y. Takahashi, T. K. Pandita, H.-G. Wang, and K. N. Bhalla (2013)
PNAS 110, 6841-6846
   Abstract »    Full Text »    PDF »
Dissociation of Bcl-2-Beclin1 Complex by Activated AMPK Enhances Cardiac Autophagy and Protects Against Cardiomyocyte Apoptosis in Diabetes.
C. He, H. Zhu, H. Li, M.-H. Zou, and Z. Xie (2013)
Diabetes 62, 1270-1281
   Abstract »    Full Text »    PDF »
Autophagic control of cell 'stemness'.
H. Pan, N. Cai, M. Li, G.-H. Liu, and J. C. Izpisua Belmonte (2013)
EMBO Mol Med. 5, 327-331
   Abstract »    Full Text »    PDF »
Ultrastructural Pathology and Interorganelle Cross Talk in Hepatotoxicity.
N. F. Cheville (2013)
Toxicol Pathol 41, 210-226
   Abstract »    Full Text »    PDF »
Autophagy Controls p38 Activation to Promote Cell Survival under Genotoxic Stress.
L. Qiang, C. Wu, M. Ming, B. Viollet, and Y.-Y. He (2013)
J. Biol. Chem. 288, 1603-1611
   Abstract »    Full Text »    PDF »
Posttranslational Modification and Quality Control.
X. Wang, J. S. Pattison, and H. Su (2013)
Circ. Res. 112, 367-381
   Abstract »    Full Text »    PDF »
Post-translational Modification of Serine/Threonine Kinase LKB1 via Adduction of the Reactive Lipid Species 4-Hydroxy-trans-2-nonenal (HNE) at Lysine Residue 97 Directly Inhibits Kinase Activity.
T. D. Calamaras, C. Lee, F. Lan, Y. Ido, D. A. Siwik, and W. S. Colucci (2012)
J. Biol. Chem. 287, 42400-42406
   Abstract »    Full Text »    PDF »
Prior starvation mitigates acute doxorubicin cardiotoxicity through restoration of autophagy in affected cardiomyocytes.
T. Kawaguchi, G. Takemura, H. Kanamori, T. Takeyama, T. Watanabe, K. Morishita, A. Ogino, A. Tsujimoto, K. Goto, R. Maruyama, et al. (2012)
Cardiovasc Res 96, 456-465
   Abstract »    Full Text »    PDF »
mTOR-Dependent Cell Survival Mechanisms.
C.-M. Hung, L. Garcia-Haro, C. A. Sparks, and D. A. Guertin (2012)
Cold Spring Harb Perspect Biol 4, a008771
   Abstract »    Full Text »    PDF »
Porcine Circovirus Type 2 Induces Autophagy via the AMPK/ERK/TSC2/mTOR Signaling Pathway in PK-15 Cells.
B. Zhu, Y. Zhou, F. Xu, J. Shuai, X. Li, and W. Fang (2012)
J. Virol. 86, 12003-12012
   Abstract »    Full Text »    PDF »
Withdrawal of Essential Amino Acids Increases Autophagy by a Pathway Involving Ca2+/Calmodulin-dependent Kinase Kinase-{beta} (CaMKK-{beta}).
G. Ghislat, M. Patron, R. Rizzuto, and E. Knecht (2012)
J. Biol. Chem. 287, 38625-38636
   Abstract »    Full Text »    PDF »
C. elegans AMPKs promote survival and arrest germline development during nutrient stress.
M. Fukuyama, K. Sakuma, R. Park, H. Kasuga, R. Nagaya, Y. Atsumi, Y. Shimomura, S. Takahashi, H. Kajiho, A. Rougvie, et al. (2012)
Biology Open 1, 929-936
   Abstract »    Full Text »    PDF »
Mitochondrial Control of Cellular Life, Stress, and Death.
L. Galluzzi, O. Kepp, C. Trojel-Hansen, and G. Kroemer (2012)
Circ. Res. 111, 1198-1207
   Abstract »    Full Text »    PDF »
AMP Kinase Activation Mitigates Dopaminergic Dysfunction and Mitochondrial Abnormalities in Drosophila Models of Parkinson's Disease.
C.-H. Ng, M. S. H. Guan, C. Koh, X. Ouyang, F. Yu, E.-K. Tan, S. P. O'Neill, X. Zhang, J. Chung, and K.-L. Lim (2012)
J. Neurosci. 32, 14311-14317
   Abstract »    Full Text »    PDF »
Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy.
C. Kraft, M. Kijanska, E. Kalie, E. Siergiejuk, S. S. Lee, G. Semplicio, I. Stoffel, A. Brezovich, M. Verma, I. Hansmann, et al. (2012)
EMBO J. 31, 3691-3703
   Abstract »    Full Text »    PDF »
Friedreich Ataxia: New Pathways.
M. Pandolfo (2012)
J Child Neurol 27, 1204-1211
   Abstract »    Full Text »    PDF »
The role of AMP-activated protein kinase in the coordination of skeletal muscle turnover and energy homeostasis.
A. M. J. Sanchez, R. B. Candau, A. Csibi, A. F. Pagano, A. Raibon, and H. Bernardi (2012)
Am J Physiol Cell Physiol 303, C475-C485
   Abstract »    Full Text »    PDF »
Metabolic Stress in Autophagy and Cell Death Pathways.
B. J. Altman and J. C. Rathmell (2012)
Cold Spring Harb Perspect Biol 4, a008763
   Abstract »    Full Text »    PDF »
Mitochondrial Fission, Fusion, and Stress.
R. J. Youle and A. M. van der Bliek (2012)
Science 337, 1062-1065
   Abstract »    Full Text »    PDF »
AMP-Activated Protein Kinase Regulation and Biological Actions in the Heart.
V. G. Zaha and L. H. Young (2012)
Circ. Res. 111, 800-814
   Abstract »    Full Text »    PDF »
The AMPK {beta}2 Subunit Is Required for Energy Homeostasis during Metabolic Stress.
B. Dasgupta, J. S. Ju, Y. Sasaki, X. Liu, S.-R. Jung, K. Higashida, D. Lindquist, and J. Milbrandt (2012)
Mol. Cell. Biol. 32, 2837-2848
   Abstract »    Full Text »    PDF »
Liver autophagy: physiology and pathology.
M. Komatsu (2012)
J. Biochem. 152, 5-15
   Abstract »    Full Text »    PDF »
Mammalian target of rapamycin and the kidney. I. The signaling pathway.
W. Lieberthal and J. S. Levine (2012)
Am J Physiol Renal Physiol 303, F1-F10
   Abstract »    Full Text »    PDF »
MEK Inhibition Leads to PI3K/AKT Activation by Relieving a Negative Feedback on ERBB Receptors.
A. B. Turke, Y. Song, C. Costa, R. Cook, C. L. Arteaga, J. M. Asara, and J. A. Engelman (2012)
Cancer Res. 72, 3228-3237
   Abstract »    Full Text »    PDF »
Regulation and Function of Autophagy during Cell Survival and Cell Death.
G. Das, B. V. Shravage, and E. H. Baehrecke (2012)
Cold Spring Harb Perspect Biol 4, a008813
   Abstract »    Full Text »    PDF »
Leucine and mTORC1: a complex relationship.
K. M. Dodd and A. R. Tee (2012)
Am J Physiol Endocrinol Metab 302, E1329-E1342
   Abstract »    Full Text »    PDF »
Deficiency in AMPK attenuates ethanol-induced cardiac contractile dysfunction through inhibition of autophagosome formation.
R. Guo and J. Ren (2012)
Cardiovasc Res 94, 480-491
   Abstract »    Full Text »    PDF »
Autophagy and cell growth - the yin and yang of nutrient responses.
T. P. Neufeld (2012)
J. Cell Sci. 125, 2359-2368
   Abstract »    Full Text »    PDF »
Redox implications of AMPK-mediated signal transduction beyond energetic clues.
S. Cardaci, G. Filomeni, and M. R. Ciriolo (2012)
J. Cell Sci. 125, 2115-2125
   Abstract »    Full Text »    PDF »
GSK3-TIP60-ULK1 Signaling Pathway Links Growth Factor Deprivation to Autophagy.
S.-Y. Lin, T. Y. Li, Q. Liu, C. Zhang, X. Li, Y. Chen, S.-M. Zhang, G. Lian, Q. Liu, K. Ruan, et al. (2012)
Science 336, 477-481
   Abstract »    Full Text »    PDF »
Contribution of Impaired Mitochondrial Autophagy to Cardiac Aging: Mechanisms and Therapeutic Opportunities.
D. Dutta, R. Calvani, R. Bernabei, C. Leeuwenburgh, and E. Marzetti (2012)
Circ. Res. 110, 1125-1138
   Abstract »    Full Text »    PDF »
Regulatory Functions of SnRK1 in Stress-Responsive Gene Expression and in Plant Growth and Development.
Y.-H. Cho, J.-W. Hong, E.-C. Kim, and S.-D. Yoo (2012)
Plant Physiology 158, 1955-1964
   Abstract »    Full Text »    PDF »
Mitochondria and cell signalling.
S. W. G. Tait and D. R. Green (2012)
J. Cell Sci. 125, 807-815
   Abstract »    Full Text »    PDF »
Mapping Autophagy on to Your Metabolic Radar.
E. Yamada and R. Singh (2012)
Diabetes 61, 272-280
   Full Text »    PDF »
AMPK directly inhibits NDPK through a phosphoserine switch to maintain cellular homeostasis.
R. U. Onyenwoke, L. J. Forsberg, L. Liu, T. Williams, O. Alzate, and J. E. Brenman (2012)
Mol. Biol. Cell 23, 381-389
   Abstract »    Full Text »    PDF »
AMP-activated protein kinase is physiologically regulated by inositol polyphosphate multikinase.
S. Bang, S. Kim, M. J. Dailey, Y. Chen, T. H. Moran, S. H. Snyder, and S. F. Kim (2012)
PNAS 109, 616-620
   Abstract »    Full Text »    PDF »
Role of AMPK-mTOR-Ulk1/2 in the Regulation of Autophagy: Cross Talk, Shortcuts, and Feedbacks.
S. Alers, A. S. Loffler, S. Wesselborg, and B. Stork (2012)
Mol. Cell. Biol. 32, 2-11
   Abstract »    Full Text »    PDF »
Ca2+/Calmodulin-Dependent Kinase (CaMK) Signaling via CaMKI and AMP-Activated Protein Kinase Contributes to the Regulation of WIPI-1 at the Onset of Autophagy.
S. G. Pfisterer, M. Mauthe, P. Codogno, and T. Proikas-Cezanne (2011)
Mol. Pharmacol. 80, 1066-1075
   Abstract »    Full Text »    PDF »
Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1{beta}.
N. Dupont, S. Jiang, M. Pilli, W. Ornatowski, D. Bhattacharya, and V. Deretic (2011)
EMBO J. 30, 4701-4711
   Abstract »    Full Text »    PDF »
AMP-Activated Protein Kinase Regulates E3 Ligases in Rodent Heart.
K. K. Baskin and H. Taegtmeyer (2011)
Circ. Res. 109, 1153-1161
   Abstract »    Full Text »    PDF »
A Role for Rac3 GTPase in the Regulation of Autophagy.
W. L. Zhu, M. S. Hossain, D. Y. Guo, S. Liu, H. Tong, A. Khakpoor, P. J. Casey, and M. Wang (2011)
J. Biol. Chem. 286, 35291-35298
   Abstract »    Full Text »    PDF »
The dynamic nature of autophagy in cancer.
A. C. Kimmelman (2011)
Genes & Dev. 25, 1999-2010
   Abstract »    Full Text »    PDF »
AMP-activated protein kinase (AMPK) {beta}1{beta}2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise.
H. M. O'Neill, S. J. Maarbjerg, J. D. Crane, J. Jeppesen, S. B. Jorgensen, J. D. Schertzer, O. Shyroka, B. Kiens, B. J. van Denderen, M. A. Tarnopolsky, et al. (2011)
PNAS 108, 16092-16097
   Abstract »    Full Text »    PDF »
AMP-activated protein kinase--an energy sensor that regulates all aspects of cell function.
D. G. Hardie (2011)
Genes & Dev. 25, 1895-1908
   Abstract »    Full Text »    PDF »
Using Tandem Mass Spectrometry in Targeted Mode to Identify Activators of Class IA PI3K in Cancer.
X. Yang, A. B. Turke, J. Qi, Y. Song, B. N. Rexer, T. W. Miller, P. A. Janne, C. L. Arteaga, L. C. Cantley, J. A. Engelman, et al. (2011)
Cancer Res. 71, 5965-5975
   Abstract »    Full Text »    PDF »
Spatial regulation of the mTORC1 system in amino acids sensing pathway.
T. Suzuki and K. Inoki (2011)
Acta Biochim Biophys Sin 43, 671-679
   Abstract »    Full Text »    PDF »
The Role of Autophagy in Cancer: Therapeutic Implications.
Z. J. Yang, C. E. Chee, S. Huang, and F. A. Sinicrope (2011)
Mol. Cancer Ther. 10, 1533-1541
   Abstract »    Full Text »    PDF »
Mitochondria and the Autophagy-Inflammation-Cell Death Axis in Organismal Aging.
D. R. Green, L. Galluzzi, and G. Kroemer (2011)
Science 333, 1109-1112
   Abstract »    Full Text »    PDF »
Kill one bird with two stones: potential efficacy of BCR-ABL and autophagy inhibition in CML.
G. V. Helgason, M. Karvela, and T. L. Holyoake (2011)
Blood 118, 2035-2043
   Abstract »    Full Text »    PDF »
An Atg13 Protein-mediated Self-association of the Atg1 Protein Kinase Is Important for the Induction of Autophagy.
Y.-Y. Yeh, K. H. Shah, and P. K. Herman (2011)
J. Biol. Chem. 286, 28931-28939
   Abstract »    Full Text »    PDF »
An emerging role for TOR signaling in mammalian tissue and stem cell physiology.
R. C. Russell, C. Fang, and K.-L. Guan (2011)
Development 138, 3343-3356
   Abstract »    Full Text »    PDF »
Calorie Restriction: Is AMPK a Key Sensor and Effector?.
C. Canto and J. Auwerx (2011)
Physiology 26, 214-224
   Abstract »    Full Text »    PDF »
AMPK -> ULK1 -> Autophagy.
P. J. Roach (2011)
Mol. Cell. Biol. 31, 3082-3084
   Full Text »    PDF »
Ammonia-induced autophagy is independent of ULK1/ULK2 kinases.
H. Cheong, T. Lindsten, J. Wu, C. Lu, and C. B. Thompson (2011)
PNAS 108, 11121-11126
   Abstract »    Full Text »    PDF »
Role of Autophagy in Cancer Prevention.
H.-Y. Chen and E. White (2011)
Cancer Prevention Research 4, 973-983
   Abstract »    Full Text »    PDF »
TFEB Links Autophagy to Lysosomal Biogenesis.
C. Settembre, C. Di Malta, V. A. Polito, M. G. Arencibia, F. Vetrini, S. Erdin, S. U. Erdin, T. Huynh, D. Medina, P. Colella, et al. (2011)
Science 332, 1429-1433
   Abstract »    Full Text »    PDF »
AMPK Activates Autophagy by Phosphorylating ULK1.
K. Mao and D. J. Klionsky (2011)
Circ. Res. 108, 787-788
   Full Text »    PDF »
Why Starving Cells Eat Themselves.
D. G. Hardie (2011)
Science 331, 410-411
   Abstract »    Full Text »    PDF »
Autophagy, Stress, and Cancer Metabolism: What Doesn't Kill You Makes You Stronger.
R. Mathew and E. White (2011)
Cold Spring Harb Symp Quant Biol 76, 389-396
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882