Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 331 (6022): 1333-1336

Copyright © 2011 by the American Association for the Advancement of Science

Function of Rhodopsin in Temperature Discrimination in Drosophila

Wei L. Shen,1 Young Kwon,1 Abidemi A. Adegbola,2 Junjie Luo,1 Andrew Chess,2,3,4 Craig Montell1,*

Abstract: Many animals, including the fruit fly, are sensitive to small differences in ambient temperature. The ability of Drosophila larvae to choose their ideal temperature (18°C) over other comfortable temperatures (19° to 24°C) depends on a thermosensory signaling pathway that includes a heterotrimeric guanine nucleotide–binding protein (G protein), a phospholipase C, and the transient receptor potential TRPA1 channel. We report that mutation of the gene (ninaE) encoding a classical G protein–coupled receptor (GPCR), Drosophila rhodopsin, eliminates thermotactic discrimination in the comfortable temperature range. This role for rhodopsin in thermotaxis toward 18°C was light-independent. Introduction of mouse melanopsin restored normal thermotactic behavior in ninaE mutant larvae. We propose that rhodopsins represent a class of evolutionarily conserved GPCRs that are required for initiating thermosensory signaling cascades.

1 Departments of Biological Chemistry and Neuroscience, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
2 Center For Human Genetic Research and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
3 Broad Institute, Cambridge, MA, 02142, USA.
4 Department of Developmental and Regenerative Biology and Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.

* To whom correspondence should be addressed. E-mail: cmontell{at}

Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures.
P. D. Gould, N. Ugarte, M. Domijan, M. Costa, J. Foreman, D. MacGregor, K. Rose, J. Griffiths, A. J. Millar, B. Finkenstadt, et al. (2014)
Mol Syst Biol 9, 650
   Abstract »    Full Text »    PDF »
The Pyrexia transient receptor potential channel mediates circadian clock synchronization to low temperature cycles in Drosophila melanogaster.
W. Wolfgang, A. Simoni, C. Gentile, and R. Stanewsky (2013)
Proc R Soc B 280, 20130959
   Abstract »    Full Text »    PDF »
Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation.
T. Balla (2013)
Physiol Rev 93, 1019-1137
   Abstract »    Full Text »    PDF »
Biological Clocks and Visual Systems in Cave-Adapted Animals at the Dawn of Speleogenomics.
M. Friedrich (2013)
Integr. Comp. Biol. 53, 50-67
   Abstract »    Full Text »    PDF »
Blood meal-induced changes to antennal transcriptome profiles reveal shifts in odor sensitivities in Anopheles gambiae.
D. C. Rinker, R. J. Pitts, X. Zhou, E. Suh, A. Rokas, and L. J. Zwiebel (2013)
PNAS 110, 8260-8265
   Abstract »    Full Text »    PDF »
Drosophila TRPA1 Functions in Temperature Control of Circadian Rhythm in Pacemaker Neurons.
Y. Lee and C. Montell (2013)
J. Neurosci. 33, 6716-6725
   Abstract »    Full Text »    PDF »
Comparative approaches to the study of physiology: Drosophila as a physiological tool.
W. S. Neckameyer and K. J. Argue (2013)
Am J Physiol Regulatory Integrative Comp Physiol 304, R177-R188
   Abstract »    Full Text »    PDF »
Temperature Integration at the AC Thermosensory Neurons in Drosophila.
X. Tang, M. D. Platt, C. M. Lagnese, J. R. Leslie, and F. N. Hamada (2013)
J. Neurosci. 33, 894-901
   Abstract »    Full Text »    PDF »
Rhodopsin 5- and Rhodopsin 6-Mediated Clock Synchronization in Drosophila melanogaster Is Independent of Retinal Phospholipase C-{beta} Signaling.
J. Szular, H. Sehadova, C. Gentile, G. Szabo, W.-H. Chou, S. G. Britt, and R. Stanewsky (2012)
J Biol Rhythms 27, 25-36
   Abstract »    Full Text »    PDF »
Identifying Specific Light Inputs for Each Subgroup of Brain Clock Neurons in Drosophila Larvae.
A. Klarsfeld, M. Picot, C. Vias, E. Chelot, and F. Rouyer (2011)
J. Neurosci. 31, 17406-17415
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 15 March 2011.
C. Montell and A. M. VanHook (2011)
Science Signaling 4, pc5
   Abstract »    Full Text »
Rhodopsin as Thermosensor?.
B. Minke and M. Peters (2011)
Science 331, 1272-1273
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882