Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 331 (6023): 1409-1413

Copyright © 2011 by the American Association for the Advancement of Science

CRYPTOCHROME Is a Blue-Light Sensor That Regulates Neuronal Firing Rate

Keri J. Fogle, Kelly G. Parson, Nicole A. Dahm, Todd C. Holmes*

Abstract: Light-responsive neural activity in central brain neurons is generally conveyed through opsin-based signaling from external photoreceptors. Large lateral ventral arousal neurons (lLNvs) in Drosophila melanogaster increase action potential firing within seconds in response to light in the absence of all opsin-based photoreceptors. Light-evoked changes in membrane resting potential occur in about 100 milliseconds. The light response is selective for blue wavelengths corresponding to the spectral sensitivity of CRYPTOCHROME (CRY). cry-null lines are light-unresponsive, but restored CRY expression in the lLNv rescues responsiveness. Furthermore, expression of CRY in neurons that are normally unresponsive to light confers responsiveness. The CRY-mediated light response requires a flavin redox-based mechanism and depends on potassium channel conductance, but is independent of the classical circadian CRY-TIMELESS interaction.

Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA.

* To whom correspondence should be addressed. E-mail: tholmes{at}uci.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Applied scotobiology in luminaire design.
R. Dick (2014)
Lighting Research and Technology 46, 50-66
   Abstract »    PDF »
Flavin reduction activates Drosophila cryptochrome.
A. T. Vaidya, D. Top, C. C. Manahan, J. M. Tokuda, S. Zhang, L. Pollack, M. W. Young, and B. R. Crane (2013)
PNAS 110, 20455-20460
   Abstract »    Full Text »    PDF »
GABAB receptors play an essential role in maintaining sleep during the second half of the night in Drosophila melanogaster.
F. Gmeiner, A. Kolodziejczyk, T. Yoshii, D. Rieger, D. R. Nassel, and C. Helfrich-Forster (2013)
J. Exp. Biol. 216, 3837-3843
   Abstract »    Full Text »    PDF »
Drosophila Neuroligin 4 Regulates Sleep through Modulating GABA Transmission.
Y. Li, Z. Zhou, X. Zhang, H. Tong, P. Li, Z. C. Zhang, Z. Jia, W. Xie, and J. Han (2013)
J. Neurosci. 33, 15545-15554
   Abstract »    Full Text »    PDF »
Fly cryptochrome and the visual system.
G. Mazzotta, A. Rossi, E. Leonardi, M. Mason, C. Bertolucci, L. Caccin, B. Spolaore, A. J. M. Martin, M. Schlichting, R. Grebler, et al. (2013)
PNAS 110, 6163-6168
   Abstract »    Full Text »    PDF »
Adaptive evolution of vertebrate-type cryptochrome in the ancestors of Hymenoptera.
B. Wang, J.-H. Xiao, S.-N. Bian, H.-F. Gu, and D.-W. Huang (2013)
Biol Lett 9, 20120958
   Abstract »    Full Text »    PDF »
Metabolism and the Circadian Clock Converge.
K. Eckel-Mahan and P. Sassone-Corsi (2013)
Physiol Rev 93, 107-135
   Abstract »    Full Text »    PDF »
Light-dependent Structural Change of Chicken Retinal Cryptochrome4.
R. Watari, C. Yamaguchi, W. Zemba, Y. Kubo, K. Okano, and T. Okano (2012)
J. Biol. Chem. 287, 42634-42641
   Abstract »    Full Text »    PDF »
Flies in the North: Locomotor Behavior and Clock Neuron Organization of Drosophila montana.
H. Kauranen, P. Menegazzi, R. Costa, C. Helfrich-Forster, A. Kankainen, and A. Hoikkala (2012)
J Biol Rhythms 27, 377-387
   Abstract »    Full Text »    PDF »
Dopamine acts through Cryptochrome to promote acute arousal in Drosophila.
S. Kumar, D. Chen, and A. Sehgal (2012)
Genes & Dev. 26, 1224-1234
   Abstract »    Full Text »    PDF »
Reciprocal cholinergic and GABAergic modulation of the small ventrolateral pacemaker neurons of Drosophila's circadian clock neuron network.
K. R. Lelito and O. T. Shafer (2012)
J Neurophysiol 107, 2096-2108
   Abstract »    Full Text »    PDF »
Rhodopsin 5- and Rhodopsin 6-Mediated Clock Synchronization in Drosophila melanogaster Is Independent of Retinal Phospholipase C-{beta} Signaling.
J. Szular, H. Sehadova, C. Gentile, G. Szabo, W.-H. Chou, S. G. Britt, and R. Stanewsky (2012)
J Biol Rhythms 27, 25-36
   Abstract »    Full Text »    PDF »
The Circadian Clock, Light, and Cryptochrome Regulate Feeding and Metabolism in Drosophila.
D. J. Seay and C. S. Thummel (2011)
J Biol Rhythms 26, 497-506
   Abstract »    PDF »
Light-Induced Structural and Functional Plasticity in Drosophila Larval Visual System.
Q. Yuan, Y. Xiang, Z. Yan, C. Han, L. Y. Jan, and Y. N. Jan (2011)
Science 333, 1458-1462
   Abstract »    Full Text »    PDF »
A CRY to Rise.
S. Hee Im and P. H. Taghert (2011)
Science 331, 1394-1395
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882