Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 332 (6025): 103-106

Copyright © 2011 by the American Association for the Advancement of Science

Perception of UV-B by the Arabidopsis UVR8 Protein

Luca Rizzini,1,* Jean-Jacques Favory,1,* Catherine Cloix,2 Davide Faggionato,3 Andrew O’Hara,2 Eirini Kaiserli,2,{dagger} Ralf Baumeister,3,4 Eberhard Schäfer,1,4 Ferenc Nagy,5,6 Gareth I. Jenkins,2 Roman Ulm1,4,7,{ddagger}

Abstract: To optimize their growth and survival, plants perceive and respond to ultraviolet-B (UV-B) radiation. However, neither the molecular identity of the UV-B photoreceptor nor the photoperception mechanism is known. Here we show that dimers of the UVR8 protein perceive UV-B, probably by a tryptophan-based mechanism. Absorption of UV-B induces instant monomerization of the photoreceptor and interaction with COP1, the central regulator of light signaling. Thereby this signaling cascade controlled by UVR8 mediates UV-B photomorphogenic responses securing plant acclimation and thus promotes survival in sunlight.

1 Faculty of Biology, Institute of Biology II, University of Freiburg, D-79104 Freiburg, Germany.
2 Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK.
3 Faculty of Biology, Institute of Biology III, and Faculty of Medicine, ZBMZ, University of Freiburg, D-79104 Freiburg, Germany.
4 BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany.
5 Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary.
6 School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
7 Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland.

* These authors contributed equally to this work.

{dagger} Present address: The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.

{ddagger} To whom correspondence should be addressed. E-mail: roman.ulm{at}

On the mechanism of photoinduced dimer dissociation in the plant UVR8 photoreceptor.
A. A. Voityuk, R. A. Marcus, and M.-E. Michel-Beyerle (2014)
PNAS 111, 5219-5224
   Abstract »    Full Text »    PDF »
Ultraviolet-B-Induced Stomatal Closure in Arabidopsis Is Regulated by the UV RESISTANCE LOCUS8 Photoreceptor in a Nitric Oxide-Dependent Mechanism.
V. Tossi, L. Lamattina, G. I. Jenkins, and R. O. Cassia (2014)
Plant Physiology 164, 2220-2230
   Abstract »    Full Text »    PDF »
UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation.
J. J. Biever, D. Brinkman, and G. Gardner (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Role of Arabidopsis UV RESISTANCE LOCUS 8 in Plant Growth Reduction under Osmotic Stress and Low Levels of UV-B.
R. Fasano, N. Gonzalez, A. Tosco, F. Dal Piaz, T. Docimo, R. Serrano, S. Grillo, A. Leone, and D. Inze (2014)
Mol Plant
   Abstract »    Full Text »    PDF »
The impact of chromatin dynamics on plant light responses and circadian clock function.
F. Barneche, J. Malapeira, and P. Mas (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Both PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 Promote Seedling Photomorphogenesis in Multiple Light Signaling Pathways.
P. Zhou, M. Song, Q. Yang, L. Su, P. Hou, L. Guo, X. Zheng, Y. Xi, F. Meng, Y. Xiao, et al. (2014)
Plant Physiology 164, 841-852
   Abstract »    Full Text »    PDF »
Phototropism: Some History, Some Puzzles, and a Look Ahead.
W. R. Briggs (2014)
Plant Physiology 164, 13-23
   Full Text »    PDF »
The UV-B Photoreceptor UVR8: From Structure to Physiology.
G. I. Jenkins (2014)
PLANT CELL 26, 21-37
   Abstract »    Full Text »    PDF »
Constitutively active UVR8 photoreceptor variant in Arabidopsis.
M. Heijde, M. Binkert, R. Yin, F. Ares-Orpel, L. Rizzini, E. Van De Slijke, G. Persiau, J. Nolf, K. Gevaert, G. De Jaeger, et al. (2013)
PNAS 110, 20326-20331
   Abstract »    Full Text »    PDF »
Shade avoidance: phytochrome signalling and other aboveground neighbour detection cues.
R. Pierik and M. de Wit (2013)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Z-Box Binding Transcription Factors (ZBFs): A New Class of Transcription Factors in Arabidopsis Seedling Development.
S. N. Gangappa, A. K. Srivastava, J. P. Maurya, H. Ram, and S. Chattopadhyay (2013)
Mol Plant 6, 1758-1768
   Abstract »    Full Text »    PDF »
PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS.
M. Endo, Y. Tanigawa, T. Murakami, T. Araki, and A. Nagatani (2013)
PNAS 110, 18017-18022
   Abstract »    Full Text »    PDF »
Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B.
X. Huang, X. Ouyang, P. Yang, O. S. Lau, L. Chen, N. Wei, and X. W. Deng (2013)
PNAS 110, 16669-16674
   Abstract »    Full Text »    PDF »
Repression of Growth Regulating Factors by the MicroRNA396 Inhibits Cell Proliferation by UV-B Radiation in Arabidopsis Leaves.
R. Casadevall, R. E. Rodriguez, J. M. Debernardi, J. F. Palatnik, and P. Casati (2013)
PLANT CELL 25, 3570-3583
   Abstract »    Full Text »    PDF »
Multi-chromatic control of mammalian gene expression and signaling.
K. Muller, R. Engesser, S. Schulz, T. Steinberg, P. Tomakidi, C. C. Weber, R. Ulm, J. Timmer, M. D. Zurbriggen, and W. Weber (2013)
Nucleic Acids Res. 41, e124
   Abstract »    Full Text »    PDF »
A light-triggered protein secretion system.
D. Chen, E. S. Gibson, and M. J. Kennedy (2013)
J. Cell Biol. 201, 631-640
   Abstract »    Full Text »    PDF »
Conditional Involvement of CONSTITUTIVE PHOTOMORPHOGENIC1 in the Degradation of Phytochrome A.
D. Debrieux, M. Trevisan, and C. Fankhauser (2013)
Plant Physiology 161, 2136-2145
   Abstract »    Full Text »    PDF »
Role and Interrelationship of G{alpha} Protein, Hydrogen Peroxide, and Nitric Oxide in Ultraviolet B-Induced Stomatal Closure in Arabidopsis Leaves.
J.-M. He, X.-G. Ma, Y. Zhang, T.-F. Sun, F.-F. Xu, Y.-P. Chen, X. Liu, and M. Yue (2013)
Plant Physiology 161, 1570-1583
   Abstract »    Full Text »    PDF »
Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation.
L. O. Morales, M. Brosche, J. Vainonen, G. I. Jenkins, J. J. Wargent, N. Sipari, A. Strid, A. V. Lindfors, R. Tegelberg, and P. J. Aphalo (2013)
Plant Physiology 161, 744-759
   Abstract »    Full Text »    PDF »
Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state.
M. Heijde and R. Ulm (2013)
PNAS 110, 1113-1118
   Abstract »    Full Text »    PDF »
The production of a key floral volatile is dependent on UV light in a sexually deceptive orchid.
V. Falara, R. Amarasinghe, J. Poldy, E. Pichersky, R. A. Barrow, and R. Peakall (2013)
Ann. Bot. 111, 21-30
   Abstract »    Full Text »    PDF »
Contributions of green light to plant growth and development.
Y. Wang and K. M. Folta (2013)
Am. J. Botany 100, 70-78
   Abstract »    Full Text »    PDF »
Phototropism: Translating light into directional growth.
T. Hohm, T. Preuten, and C. Fankhauser (2013)
Am. J. Botany 100, 47-59
   Abstract »    Full Text »    PDF »
Diverse Responses to Blue Light via LOV Photoreceptors.
K.-i. Shimazaki and S. Tokutomi (2013)
Plant Cell Physiol. 54, 1-4
   Full Text »    PDF »
Both Phototropin 1 and 2 Localize on the Chloroplast Outer Membrane with Distinct Localization Activity.
S.-G. Kong, N. Suetsugu, S. Kikuchi, M. Nakai, A. Nagatani, and M. Wada (2013)
Plant Cell Physiol. 54, 80-92
   Abstract »    Full Text »    PDF »
Arabidopsis Phytochrome B Promotes SPA1 Nuclear Accumulation to Repress Photomorphogenesis under Far-Red Light.
X. Zheng, S. Wu, H. Zhai, P. Zhou, M. Song, L. Su, Y. Xi, Z. Li, Y. Cai, F. Meng, et al. (2013)
PLANT CELL 25, 115-133
   Abstract »    Full Text »    PDF »
Rapid Reversion from Monomer to Dimer Regenerates the Ultraviolet-B Photoreceptor UV RESISTANCE LOCUS8 in Intact Arabidopsis Plants.
M. Heilmann and G. I. Jenkins (2013)
Plant Physiology 161, 547-555
   Abstract »    Full Text »    PDF »
The Circadian Clock-Associated Small GTPase LIGHT INSENSITIVE PERIOD1 Suppresses Light-Controlled Endoreplication and Affects Tolerance to Salt Stress in Arabidopsis.
K. Terecskei, R. Toth, P. Gyula, E. Kevei, J. Bindics, G. Coupland, F. Nagy, and L. Kozma-Bognar (2013)
Plant Physiology 161, 278-290
   Abstract »    Full Text »    PDF »
Horticultural lighting - present and future challenges.
P. Pinho, K. Jokinen, and L. Halonen (2012)
Lighting Research and Technology 44, 427-437
   Abstract »    PDF »
Arabidopsis FHY3 and HY5 Positively Mediate Induction of COP1 Transcription in Response to Photomorphogenic UV-B Light.
X. Huang, X. Ouyang, P. Yang, O. S. Lau, G. Li, J. Li, H. Chen, and X. W. Deng (2012)
PLANT CELL 24, 4590-4606
   Abstract »    Full Text »    PDF »
C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein.
C. Cloix, E. Kaiserli, M. Heilmann, K. J. Baxter, B. A. Brown, A. O'Hara, B. O. Smith, J. M. Christie, and G. I. Jenkins (2012)
PNAS 109, 16366-16370
   Abstract »    Full Text »    PDF »
Arabidopsis bZIP16 Transcription Factor Integrates Light and Hormone Signaling Pathways to Regulate Early Seedling Development.
W.-P. Hsieh, H.-L. Hsieh, and S.-H. Wu (2012)
PLANT CELL 24, 3997-4011
   Abstract »    Full Text »    PDF »
MdCOP1 Ubiquitin E3 Ligases Interact with MdMYB1 to Regulate Light-Induced Anthocyanin Biosynthesis and Red Fruit Coloration in Apple.
Y.-Y. Li, K. Mao, C. Zhao, X.-Y. Zhao, H.-L. Zhang, H.-R. Shu, and Y.-J. Hao (2012)
Plant Physiology 160, 1011-1022
   Abstract »    Full Text »    PDF »
In Vivo Function of Tryptophans in the Arabidopsis UV-B Photoreceptor UVR8.
A. O'Hara and G. I. Jenkins (2012)
PLANT CELL 24, 3755-3766
   Abstract »    Full Text »    PDF »
UV-B Irradiation Changes Specifically the Secondary Metabolite Profile in Broccoli Sprouts: Induced Signaling Overlaps with Defense Response to Biotic Stressors.
I. Mewis, M. Schreiner, C. N. Nguyen, A. Krumbein, C. Ulrichs, M. Lohse, and R. Zrenner (2012)
Plant Cell Physiol. 53, 1546-1560
   Abstract »    Full Text »    PDF »
The COP9 Signalosome: Its Regulation of Cullin-Based E3 Ubiquitin Ligases and Role in Photomorphogenesis.
C. D. Nezames and X. W. Deng (2012)
Plant Physiology 160, 38-46
   Full Text »    PDF »
The Mediator Complex Subunit PFT1 Interferes with COP1 and HY5 in the Regulation of Arabidopsis Light Signaling.
C. Klose, C. Buche, A. P. Fernandez, E. Schafer, E. Zwick, and T. Kretsch (2012)
Plant Physiology 160, 289-307
   Abstract »    Full Text »    PDF »
The Light-Response BTB1 and BTB2 Proteins Assemble Nuclear Ubiquitin Ligases That Modify Phytochrome B and D Signaling in Arabidopsis.
M. J. Christians, D. J. Gingerich, Z. Hua, T. D. Lauer, and R. D. Vierstra (2012)
Plant Physiology 160, 118-134
   Abstract »    Full Text »    PDF »
Canopy Light and Plant Health.
C. L. Ballare, C. A. Mazza, A. T. Austin, and R. Pierik (2012)
Plant Physiology 160, 145-155
   Full Text »    PDF »
Phytochrome Kinase Substrate 4 is phosphorylated by the phototropin 1 photoreceptor.
E. Demarsy, I. Schepens, K. Okajima, M. Hersch, S. Bergmann, J. Christie, K.-i. Shimazaki, S. Tokutomi, and C. Fankhauser (2012)
EMBO J. 31, 3457-3467
   Abstract »    Full Text »    PDF »
The Phytochrome-Interacting VASCULAR PLANT ONE-ZINC FINGER1 and VOZ2 Redundantly Regulate Flowering in Arabidopsis.
Y. Yasui, K. Mukougawa, M. Uemoto, A. Yokofuji, R. Suzuri, A. Nishitani, and T. Kohchi (2012)
PLANT CELL 24, 3248-3263
   Abstract »    Full Text »    PDF »
UV-A Light Induces Anthocyanin Biosynthesis in a Manner Distinct from Synergistic Blue + UV-B Light and UV-A/Blue Light Responses in Different Parts of the Hypocotyls in Turnip Seedlings.
Y. Wang, B. Zhou, M. Sun, Y. Li, and S. Kawabata (2012)
Plant Cell Physiol. 53, 1470-1480
   Abstract »    Full Text »    PDF »
Molecular Interactions of GBF1 with HY5 and HYH Proteins during Light-mediated Seedling Development in Arabidopsis thaliana.
A. Singh, H. Ram, N. Abbas, and S. Chattopadhyay (2012)
J. Biol. Chem. 287, 25995-26009
   Abstract »    Full Text »    PDF »
UVR8 Mediates UV-B-Induced Arabidopsis Defense Responses against Botrytis cinerea by Controlling Sinapate Accumulation.
P. V. Demkura and C. L. Ballare (2012)
Mol Plant 5, 642-652
   Abstract »    Full Text »    PDF »
Shedding Light on Large-Scale Chromatin Reorganization in Arabidopsis thaliana.
M. van Zanten, F. Tessadori, A. J. M. Peeters, and P. Fransz (2012)
Mol Plant 5, 583-590
   Abstract »    Full Text »    PDF »
MAX2 Affects Multiple Hormones to Promote Photomorphogenesis.
H. Shen, L. Zhu, Q.-Y. Bu, and E. Huq (2012)
Mol Plant 5, 750-762
   Abstract »    Full Text »    PDF »
A Short Amino-Terminal Part of Arabidopsis Phytochrome A Induces Constitutive Photomorphogenic Response.
A. Viczian, E. Adam, I. Wolf, J. Bindics, S. Kircher, M. Heijde, R. Ulm, E. Schafer, and F. Nagy (2012)
Mol Plant 5, 629-641
   Abstract »    Full Text »    PDF »
How Plants See the Invisible.
K. H. Gardner and F. Correa (2012)
Science 335, 1451-1452
   Abstract »    Full Text »    PDF »
Plant UVR8 Photoreceptor Senses UV-B by Tryptophan-Mediated Disruption of Cross-Dimer Salt Bridges.
J. M. Christie, A. S. Arvai, K. J. Baxter, M. Heilmann, A. J. Pratt, A. O'Hara, S. M. Kelly, M. Hothorn, B. O. Smith, K. Hitomi, et al. (2012)
Science 335, 1492-1496
   Abstract »    Full Text »    PDF »
Photosynthetic control of electron transport and the regulation of gene expression.
C. H. Foyer, J. Neukermans, G. Queval, G. Noctor, and J. Harbinson (2012)
J. Exp. Bot. 63, 1637-1661
   Abstract »    Full Text »    PDF »
Nuclear Phytochrome A Signaling Promotes Phototropism in Arabidopsis.
C. Kami, M. Hersch, M. Trevisan, T. Genoud, A. Hiltbrunner, S. Bergmann, and C. Fankhauser (2012)
PLANT CELL 24, 566-576
   Abstract »    Full Text »    PDF »
Photobodies in Light Signaling.
E. K. Van Buskirk, P. V. Decker, and M. Chen (2012)
Plant Physiology 158, 52-60
   Full Text »    PDF »
A Non-Covalently Attached Chromophore can Mediate Phytochrome B Signaling in Arabidopsis.
Y. Oka, S.-G. Kong, and T. Matsushita (2011)
Plant Cell Physiol. 52, 2088-2102
   Abstract »    Full Text »    PDF »
The interplay between light and jasmonate signalling during defence and development.
K. Kazan and J. M. Manners (2011)
J. Exp. Bot. 62, 4087-4100
   Abstract »    Full Text »    PDF »
BBX32, an Arabidopsis B-Box Protein, Functions in Light Signaling by Suppressing HY5-Regulated Gene Expression and Interacting with STH2/BBX21.
H. E. Holtan, S. Bandong, C. M. Marion, L. Adam, S. Tiwari, Y. Shen, J. N. Maloof, D. R. Maszle, M.-a. Ohto, S. Preuss, et al. (2011)
Plant Physiology 156, 2109-2123
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882