Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 332 (6027): 322-327

Copyright © 2011 by the American Association for the Advancement of Science

Structure of an Agonist-Bound Human A2A Adenosine Receptor

Fei Xu,1 Huixian Wu,1 Vsevolod Katritch,2 Gye Won Han,1 Kenneth A. Jacobson,3 Zhan-Guo Gao,3 Vadim Cherezov,1 Raymond C. Stevens1,*

Abstract: Activation of G protein–coupled receptors upon agonist binding is a critical step in the signaling cascade for this family of cell surface proteins. We report the crystal structure of the A2A adenosine receptor (A2AAR) bound to an agonist UK-432097 at 2.7 angstrom resolution. Relative to inactive, antagonist-bound A2AAR, the agonist-bound structure displays an outward tilt and rotation of the cytoplasmic half of helix VI, a movement of helix V, and an axial shift of helix III, resembling the changes associated with the active-state opsin structure. Additionally, a seesaw movement of helix VII and a shift of extracellular loop 3 are likely specific to A2AAR and its ligand. The results define the molecule UK-432097 as a "conformationally selective agonist" capable of receptor stabilization in a specific active-state configuration.

1 Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
2 Skaggs School of Pharmacy and Pharmaceutical Sciences and San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA.
3 Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.

* To whom correspondence should be addressed. E-mail: stevens{at}

Structure of a Class C GPCR Metabotropic Glutamate Receptor 1 Bound to an Allosteric Modulator.
H. Wu, C. Wang, K. J. Gregory, G. W. Han, H. P. Cho, Y. Xia, C. M. Niswender, V. Katritch, J. Meiler, V. Cherezov, et al. (2014)
Science 344, 58-64
   Abstract »    Full Text »    PDF »
Preferential Binding of an Odor Within Olfactory Receptors: A Precursor to Receptor Activation.
P. C. Lai, B. Guida, J. Shi, and C. J. Crasto (2014)
Chem Senses 39, 107-123
   Abstract »    Full Text »    PDF »
The Second Extracellular Loop of the Adenosine A1 Receptor Mediates Activity of Allosteric Enhancers.
D. P. Kennedy, F. M. McRobb, S. A. Leonhardt, M. Purdy, H. Figler, M. A. Marshall, M. Chordia, R. Figler, J. Linden, R. Abagyan, et al. (2014)
Mol. Pharmacol. 85, 301-309
   Abstract »    Full Text »    PDF »
SuperBiHelix method for predicting the pleiotropic ensemble of G-protein-coupled receptor conformations.
J. K. Bray, R. Abrol, W. A. Goddard III, B. Trzaskowski, and C. E. Scott (2014)
PNAS 111, E72-E78
   Abstract »    Full Text »    PDF »
Activation and dynamic network of the M2 muscarinic receptor.
Y. Miao, S. E. Nichols, P. M. Gasper, V. T. Metzger, and J. A. McCammon (2013)
PNAS 110, 10982-10987
   Abstract »    Full Text »    PDF »
Structural Features for Functional Selectivity at Serotonin Receptors.
D. Wacker, C. Wang, V. Katritch, G. W. Han, X.-P. Huang, E. Vardy, J. D. McCorvy, Y. Jiang, M. Chu, F. Y. Siu, et al. (2013)
Science 340, 615-619
   Abstract »    Full Text »    PDF »
Biased and Constitutive Signaling in the CC-chemokine Receptor CCR5 by Manipulating the Interface between Transmembrane Helices 6 and 7.
A. Steen, S. Thiele, D. Guo, L. S. Hansen, T. M. Frimurer, and M. M. Rosenkilde (2013)
J. Biol. Chem. 288, 12511-12521
   Abstract »    Full Text »    PDF »
Functional fusions of T4 lysozyme in the third intracellular loop of a G protein-coupled receptor identified by a random screening approach in yeast.
E. Mathew, F.-X. Ding, F. Naider, and M. E. Dumont (2013)
Protein Eng. Des. Sel. 26, 59-71
   Abstract »    Full Text »    PDF »
Extracellular Loop II Modulates GTP Sensitivity of the Prostaglandin EP3 Receptor.
C. Natarajan, A. N. Hata, H. E. Hamm, R. Zent, and R. M. Breyer (2013)
Mol. Pharmacol. 83, 206-216
   Abstract »    Full Text »    PDF »
PheVI:09 (Phe6.44) as a Sliding Microswitch in Seven-transmembrane (7TM) G Protein-coupled Receptor Activation.
L. Valentin-Hansen, B. Holst, T. M. Frimurer, and T. W. Schwartz (2012)
J. Biol. Chem. 287, 43516-43526
   Abstract »    Full Text »    PDF »
Reengineering the Collision Coupling and Diffusion Mode of the A2A-adenosine Receptor: PALMITOYLATION IN HELIX 8 RELIEVES CONFINEMENT.
S. Keuerleber, P. Thurner, C. W. Gruber, J. Zezula, and M. Freissmuth (2012)
J. Biol. Chem. 287, 42104-42118
   Abstract »    Full Text »    PDF »
Sequential Conformational Rearrangements Dictate the Dynamics of Class C GPCR Activation.
J. R. Lane and M. Canals (2012)
Science Signaling 5, pe51
   Abstract »    Full Text »    PDF »
Pleiotropic functions of the transmembrane domain 6 of human melanocortin-4 receptor.
H. Huang and Y.-X. Tao (2012)
J. Mol. Endocrinol. 49, 237-248
   Abstract »    Full Text »    PDF »
Helix 8 of leukotriene B4 receptor 1 inhibits ligand-induced internalization.
Y. Aratake, T. Okuno, T. Matsunobu, K. Saeki, R. Takayanagi, S. Furuya, and T. Yokomizo (2012)
FASEB J 26, 4068-4078
   Abstract »    Full Text »    PDF »
Modulation of Constitutive Activity and Signaling Bias of the Ghrelin Receptor by Conformational Constraint in the Second Extracellular Loop.
J. Mokrosinski, T. M. Frimurer, B. Sivertsen, T. W. Schwartz, and B. Holst (2012)
J. Biol. Chem. 287, 33488-33502
   Abstract »    Full Text »    PDF »
A Key Agonist-induced Conformational Change in the Cannabinoid Receptor CB1 Is Blocked by the Allosteric Ligand Org 27569.
J. F. Fay and D. L. Farrens (2012)
J. Biol. Chem. 287, 33873-33882
   Abstract »    Full Text »    PDF »
The Arginine of the DRY Motif in Transmembrane Segment III Functions as a Balancing Micro-switch in the Activation of the {beta}2-Adrenergic Receptor.
L. Valentin-Hansen, M. Groenen, R. Nygaard, T. M. Frimurer, N. D. Holliday, and T. W. Schwartz (2012)
J. Biol. Chem. 287, 31973-31982
   Abstract »    Full Text »    PDF »
New Insights for Drug Design from the X-Ray Crystallographic Structures of G-Protein-Coupled Receptors.
K. A. Jacobson and S. Costanzi (2012)
Mol. Pharmacol. 82, 361-371
   Abstract »    Full Text »    PDF »
Using ortholog sequence data to predict the functional relevance of mutations in G-protein-coupled receptors.
M. Coster, D. Wittkopf, A. Kreuchwig, G. Kleinau, D. Thor, G. Krause, and T. Schoneberg (2012)
FASEB J 26, 3273-3281
   Abstract »    Full Text »    PDF »
Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions.
W. Liu, E. Chun, A. A. Thompson, P. Chubukov, F. Xu, V. Katritch, G. W. Han, C. B. Roth, L. H. Heitman, A. P. IJzerman, et al. (2012)
Science 337, 232-236
   Abstract »    Full Text »    PDF »
Structural Origins of Receptor Bias.
S. R. Sprang and J. C. Elk (2012)
Science 335, 1055-1056
   Abstract »    Full Text »    PDF »
Biased Signaling Pathways in {beta}2-Adrenergic Receptor Characterized by 19F-NMR.
J. J. Liu, R. Horst, V. Katritch, R. C. Stevens, and K. Wuthrich (2012)
Science 335, 1106-1110
   Abstract »    Full Text »    PDF »
A Novel Nonribose Agonist, LUF5834, Engages Residues That Are Distinct from Those of Adenosine-Like Ligands to Activate the Adenosine A2a Receptor.
J. R. Lane, C. Klein Herenbrink, G. J. P. van Westen, J. A. Spoorendonk, C. Hoffmann, and A. P. IJzerman (2012)
Mol. Pharmacol. 81, 475-487
   Abstract »    Full Text »    PDF »
Crystal Structure of a Lipid G Protein-Coupled Receptor.
M. A. Hanson, C. B. Roth, E. Jo, M. T. Griffith, F. L. Scott, G. Reinhart, H. Desale, B. Clemons, S. M. Cahalan, S. C. Schuerer, et al. (2012)
Science 335, 851-855
   Abstract »    Full Text »    PDF »
AMP Is an Adenosine A1 Receptor Agonist.
J. E. Rittiner, I. Korboukh, E. A. Hull-Ryde, J. Jin, W. P. Janzen, S. V. Frye, and M. J. Zylka (2012)
J. Biol. Chem. 287, 5301-5309
   Abstract »    Full Text »    PDF »
Structural aspects of M3 muscarinic acetylcholine receptor dimer formation and activation.
J. Hu, D. Thor, Y. Zhou, T. Liu, Y. Wang, S. M. McMillin, R. Mistry, R. A. J. Challiss, S. Costanzi, and J. Wess (2012)
FASEB J 26, 604-616
   Abstract »    Full Text »    PDF »
Differential sensitivity of types 1 and 2 cholecystokinin receptors to membrane cholesterol.
R. M. Potter, K. G. Harikumar, S. V. Wu, and L. J. Miller (2012)
J. Lipid Res. 53, 137-148
   Abstract »    Full Text »    PDF »
Pocketome: an encyclopedia of small-molecule binding sites in 4D.
I. Kufareva, A. V. Ilatovskiy, and R. Abagyan (2012)
Nucleic Acids Res. 40, D535-D540
   Abstract »    Full Text »    PDF »
Signaling by Sensory Receptors.
D. Julius and J. Nathans (2012)
Cold Spring Harb Perspect Biol 4, a005991
   Abstract »    Full Text »    PDF »
The Significance of G Protein-Coupled Receptor Crystallography for Drug Discovery.
J. A. Salon, D. T. Lodowski, and K. Palczewski (2011)
Pharmacol. Rev. 63, 901-937
   Abstract »    Full Text »    PDF »
Developing Chemical Genetic Approaches to Explore G Protein-Coupled Receptor Function: Validation of the Use of a Receptor Activated Solely by Synthetic Ligand (RASSL).
E. Alvarez-Curto, R. Prihandoko, C. S. Tautermann, J. M. Zwier, J. D. Pediani, M. J. Lohse, C. Hoffmann, A. B. Tobin, and G. Milligan (2011)
Mol. Pharmacol. 80, 1033-1046
   Abstract »    Full Text »    PDF »
Activation mechanism of the {beta}2-adrenergic receptor.
R. O. Dror, D. H. Arlow, P. Maragakis, T. J. Mildorf, A. C. Pan, H. Xu, D. W. Borhani, and D. E. Shaw (2011)
PNAS 108, 18684-18689
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882