Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 332 (6031): 811-816

Copyright © 2011 by the American Association for the Advancement of Science

Clonogenic Neoblasts Are Pluripotent Adult Stem Cells That Underlie Planarian Regeneration

Daniel E. Wagner,1,* Irving E. Wang,1,* Peter W. Reddien1,{dagger}

Abstract: Pluripotent cells in the embryo can generate all cell types, but lineage-restricted cells are generally thought to replenish adult tissues. Planarians are flatworms and regenerate from tiny body fragments, a process requiring a population of proliferating cells (neoblasts). Whether regeneration is accomplished by pluripotent cells or by the collective activity of multiple lineage-restricted cell types is unknown. We used ionizing radiation and single-cell transplantation to identify neoblasts that can form large descendant-cell colonies in vivo. These clonogenic neoblasts (cNeoblasts) produce cells that differentiate into neuronal, intestinal, and other known postmitotic cell types and are distributed throughout the body. Single transplanted cNeoblasts restored regeneration in lethally irradiated hosts. We conclude that broadly distributed, adult pluripotent stem cells underlie the remarkable regenerative abilities of planarians.

1 Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology (MIT), Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: reddien{at}

Planarian yorkie/YAP functions to integrate adult stem cell proliferation, organ homeostasis and maintenance of axial patterning.
A. Y. T. Lin and B. J. Pearson (2014)
Development 141, 1197-1208
   Abstract »    Full Text »    PDF »
A Common Cellular Basis for Muscle Regeneration in Arthropods and Vertebrates.
N. Konstantinides and M. Averof (2014)
Science 343, 788-791
   Abstract »    Full Text »    PDF »
Selective amputation of the pharynx identifies a FoxA-dependent regeneration program in planaria.
C. E. Adler, C. W. Seidel, S. A. McKinney, and A. Sanchez Alvarado (2014)
eLife Sci 3, e02238
   Abstract »    Full Text »    PDF »
Genes for regeneration.
J. Rossant (2014)
eLife Sci 3, e02517
   Abstract »    Full Text »    PDF »
Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration.
M. W. Cowles, D. D. R. Brown, S. V. Nisperos, B. N. Stanley, B. J. Pearson, and R. M. Zayas (2013)
Development 140, 4691-4702
   Abstract »    Full Text »    PDF »
A Pitx transcription factor controls the establishment and maintenance of the serotonergic lineage in planarians.
M. Marz, F. Seebeck, and K. Bartscherer (2013)
Development 140, 4499-4509
   Abstract »    Full Text »    PDF »
An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration.
T. Shomrat and M. Levin (2013)
J. Exp. Biol. 216, 3799-3810
   Abstract »    Full Text »    PDF »
Tissue absence initiates regeneration through Follistatin-mediated inhibition of Activin signaling.
M. A. Gavino, D. Wenemoser, I. E. Wang, and P. W. Reddien (2013)
eLife Sci 2, e00247
   Abstract »    Full Text »    PDF »
Transcription factors lhx1/5-1 and pitx are required for the maintenance and regeneration of serotonergic neurons in planarians.
K. W. Currie and B. J. Pearson (2013)
Development 140, 3577-3588
   Abstract »    Full Text »    PDF »
Heterochromatin protein 1 promotes self-renewal and triggers regenerative proliferation in adult stem cells.
A. Zeng, Y.-Q. Li, C. Wang, X.-S. Han, G. Li, J.-Y. Wang, D.-S. Li, Y.-W. Qin, Y. Shi, G. Brewer, et al. (2013)
J. Cell Biol. 201, 409-425
   Abstract »    Full Text »    PDF »
Specialized progenitors and regeneration.
P. W. Reddien (2013)
Development 140, 951-957
   Abstract »    Full Text »    PDF »
Towards a bioinformatics of patterning: a computational approach to understanding regulative morphogenesis.
D. Lobo, T. J. Malone, and M. Levin (2013)
Biology Open 2, 156-169
   Abstract »    Full Text »    PDF »
PBX/extradenticle is required to re-establish axial structures and polarity during planarian regeneration.
R. A. Blassberg, D. A. Felix, B. Tejada-Romero, and A. A. Aboobaker (2013)
Development 140, 730-739
   Abstract »    Full Text »    PDF »
pbx is required for pole and eye regeneration in planarians.
C.-C. G. Chen, I. E. Wang, and P. W. Reddien (2013)
Development 140, 719-729
   Abstract »    Full Text »    PDF »
Follistatin antagonizes Activin signaling and acts with Notum to direct planarian head regeneration.
R. H. Roberts-Galbraith and P. A. Newmark (2013)
PNAS 110, 1363-1368
   Abstract »    Full Text »    PDF »
Bioelectric signaling regulates head and organ size during planarian regeneration.
W. S. Beane, J. Morokuma, J. M. Lemire, and M. Levin (2013)
Development 140, 313-322
   Abstract »    Full Text »    PDF »
Functional genomic characterization of neoblast-like stem cells in larval Schistosoma mansoni.
B. Wang, J. J. Collins III, and P. A. Newmark (2013)
eLife Sci 2, e00768
   Abstract »    Full Text »    PDF »
Amputation induces stem cell mobilization to sites of injury during planarian regeneration.
O. C. Guedelhoefer IV and A. S. Alvarado (2012)
Development 139, 3510-3520
   Abstract »    Full Text »    PDF »
Proteomic Profiling of the Planarian Schmidtea mediterranea and Its Mucous Reveals Similarities with Human Secretions and Those Predicted for Parasitic Flatworms.
D. G. Bocchinfuso, P. Taylor, E. Ross, A. Ignatchenko, V. Ignatchenko, T. Kislinger, B. J. Pearson, and M. F. Moran (2012)
Mol. Cell. Proteomics 11, 681-691
   Abstract »    Full Text »    PDF »
Stem cell powwow in Squaw Valley.
I. Chambers and T. Schroeder (2012)
Development 139, 2457-2461
   Abstract »    Full Text »    PDF »
A lack of commitment for over 500 million years: conserved animal stem cell pluripotency.
A. A. Aboobaker and D. Kao (2012)
EMBO J. 31, 2747-2749
   Abstract »    Full Text »    PDF »
Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells.
P. Onal, D. Grun, C. Adamidi, A. Rybak, J. Solana, G. Mastrobuoni, Y. Wang, H.-P. Rahn, W. Chen, S. Kempa, et al. (2012)
EMBO J. 31, 2755-2769
   Abstract »    Full Text »    PDF »
A molecular wound response program associated with regeneration initiation in planarians.
D. Wenemoser, S. W. Lapan, A. W. Wilkinson, G. W. Bell, and P. W. Reddien (2012)
Genes & Dev. 26, 988-1002
   Abstract »    Full Text »    PDF »
TOR signaling regulates planarian stem cells and controls localized and organismal growth.
T. H. Peiris, F. Weckerle, E. Ozamoto, D. Ramirez, D. Davidian, M. E. Garcia-Ojeda, and N. J. Oviedo (2012)
J. Cell Sci. 125, 1657-1665
   Abstract »    Full Text »    PDF »
PRMT5 and the role of symmetrical dimethylarginine in chromatoid bodies of planarian stem cells.
L. Rouhana, A. P. Vieira, R. H. Roberts-Galbraith, and P. A. Newmark (2012)
Development 139, 1083-1094
   Abstract »    Full Text »    PDF »
Beyond the cell: The cell biology of regeneration.
R. S. King and P. A. Newmark (2012)
J. Cell Biol. 196, 553-562
   Abstract »    Full Text »    PDF »
Centrosome Loss in the Evolution of Planarians.
J. Azimzadeh, M. L. Wong, D. M. Downhour, A. S. Alvarado, and W. F. Marshall (2012)
Science 335, 461-463
   Abstract »    Full Text »    PDF »
A regulatory program for excretory system regeneration in planarians.
M. L. Scimone, M. Srivastava, G. W. Bell, and P. W. Reddien (2011)
Development 138, 4387-4398
   Abstract »    Full Text »    PDF »
Planarian Pluripotency.
J. M. W. Slack (2011)
Science 332, 799-800
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882