Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 332 (6032): 974-977

Copyright © 2011 by the American Association for the Advancement of Science

The Toll-Like Receptor 2 Pathway Establishes Colonization by a Commensal of the Human Microbiota

June L. Round,1,* S. Melanie Lee,1 Jennifer Li,1 Gloria Tran,1 Bana Jabri,2 Talal A. Chatila,3 Sarkis K. Mazmanian1,*

Abstract: Mucosal surfaces constantly encounter microbes. Toll-like receptors (TLRs) mediate recognition of microbial patterns to eliminate pathogens. By contrast, we demonstrate that the prominent gut commensal Bacteroides fragilis activates the TLR pathway to establish host-microbial symbiosis. TLR2 on CD4+ T cells is required for B. fragilis colonization of a unique mucosal niche in mice during homeostasis. A symbiosis factor (PSA, polysaccharide A) of B. fragilis signals through TLR2 directly on Foxp3+ regulatory T cells to promote immunologic tolerance. B. fragilis lacking PSA is unable to restrain T helper 17 cell responses and is defective in niche-specific mucosal colonization. Therefore, commensal bacteria exploit the TLR pathway to actively suppress immunity. We propose that the immune system can discriminate between pathogens and the microbiota through recognition of symbiotic bacterial molecules in a process that engenders commensal colonization.

1 Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
2 Department of Pathology, Department of Pediatrics, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
3 Division of Immunology, Allergy and Rheumatology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.

* To whom correspondence should be addressed. E-mail: jround{at}caltech.edu (J.L.R.); sarkis{at}caltech.edu (S.K.M.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis.
A. Mortha, A. Chudnovskiy, D. Hashimoto, M. Bogunovic, S. P. Spencer, Y. Belkaid, and M. Merad (2014)
Science 343, 1249288
   Abstract »    Full Text »    PDF »
Mgat2 ablation in the myeloid lineage leads to defective glycoantigen T cell responses.
S. O. Ryan, S. M. Leal Jr, D. W. Abbott, E. Pearlman, and B. A. Cobb (2014)
Glycobiology 24, 262-271
   Abstract »    Full Text »    PDF »
Emerging roles of the microbiome in cancer.
S. J. Bultman (2014)
Carcinogenesis 35, 249-255
   Abstract »    Full Text »    PDF »
Symbiosis as a General Principle in Eukaryotic Evolution.
A. E. Douglas (2014)
Cold Spring Harb Perspect Biol 6, a016113
   Abstract »    Full Text »    PDF »
Interspecies Interactions Determine the Impact of the Gut Microbiota on Nutrient Allocation in Drosophila melanogaster.
P. D. Newell and A. E. Douglas (2014)
Appl. Envir. Microbiol. 80, 788-796
   Abstract »    Full Text »    PDF »
Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health.
G. A. Rook (2013)
PNAS 110, 18360-18367
   Abstract »    Full Text »    PDF »
TLR2 & Co: a critical analysis of the complex interactions between TLR2 and coreceptors.
J. van Bergenhenegouwen, T. S. Plantinga, L. A. B. Joosten, M. G. Netea, G. Folkerts, A. D. Kraneveld, J. Garssen, and A. P. Vos (2013)
J. Leukoc. Biol. 94, 885-902
   Abstract »    Full Text »    PDF »
Distinct antimicrobial peptide expression determines host species-specific bacterial associations.
S. Franzenburg, J. Walter, S. Kunzel, J. Wang, J. F. Baines, T. C. G. Bosch, and S. Fraune (2013)
PNAS 110, E3730-E3738
   Abstract »    Full Text »    PDF »
Location, location, location: tissue-specific regulation of immune responses.
W. Hu and C. Pasare (2013)
J. Leukoc. Biol. 94, 409-421
   Abstract »    Full Text »    PDF »
Mucin-type O-glycans and their roles in intestinal homeostasis.
K. S. B. Bergstrom and L. Xia (2013)
Glycobiology 23, 1026-1037
   Abstract »    Full Text »    PDF »
Intestinal microbiology in early life: specific prebiotics can have similar functionalities as human-milk oligosaccharides.
R. Oozeer, K. van Limpt, T. Ludwig, K. Ben Amor, R. Martin, R. D. Wind, G. Boehm, and J. Knol (2013)
Am J Clin Nutr 98, 561S-571S
   Abstract »    Full Text »    PDF »
An update on the use and investigation of probiotics in health and disease.
M. E. Sanders, F. Guarner, R. Guerrant, P. R. Holt, E. M. Quigley, R. B. Sartor, P. M. Sherman, and E. A. Mayer (2013)
Gut 62, 787-796
   Abstract »    Full Text »    PDF »
A Novel Class of Lipoprotein Lipase-Sensitive Molecules Mediates Toll-Like Receptor 2 Activation by Porphyromonas gingivalis.
S. Jain, S. R. Coats, A. M. Chang, and R. P. Darveau (2013)
Infect. Immun. 81, 1277-1286
   Abstract »    Full Text »    PDF »
Exploring host-microbiota interactions in animal models and humans.
A. D. Kostic, M. R. Howitt, and W. S. Garrett (2013)
Genes & Dev. 27, 701-718
   Abstract »    Full Text »    PDF »
Identification of a TLR2-stimulating lipoprotein in Bacteroides fragilis JCM 11019 (NCTC 9343).
M. Hashimoto, H. Eguchi, K. Tawaratsumida, T. Kirikae, and Y. Suda (2013)
Innate Immunity 19, 132-139
   Abstract »    Full Text »    PDF »
Animals in a bacterial world, a new imperative for the life sciences.
M. McFall-Ngai, M. G. Hadfield, T. C. G. Bosch, H. V. Carey, T. Domazet-Loso, A. E. Douglas, N. Dubilier, G. Eberl, T. Fukami, S. F. Gilbert, et al. (2013)
PNAS 110, 3229-3236
   Abstract »    Full Text »    PDF »
Role of the Gut Microbiota in the Development and Function of Lymphoid Cells.
N. Kamada and G. Nunez (2013)
J. Immunol. 190, 1389-1395
   Abstract »    Full Text »    PDF »
Hypothesis: Bacteria Control Host Appetites.
V. Norris, F. Molina, and A. T. Gewirtz (2013)
J. Bacteriol. 195, 411-416
   Abstract »    Full Text »    PDF »
Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis.
J. U. Scher, A. Sczesnak, R. S. Longman, N. Segata, C. Ubeda, C. Bielski, T. Rostron, V. Cerundolo, E. G. Pamer, S. B. Abramson, et al. (2013)
eLife Sci 2, e01202
   Abstract »    Full Text »    PDF »
Microbial 'Old Friends', immunoregulation and stress resilience.
G. A. W. Rook, C. A. Lowry, and C. L. Raison (2013)
EMPH 2013, 46-64
   Abstract »    Full Text »    PDF »
MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers.
S. Franzenburg, S. Fraune, S. Kunzel, J. F. Baines, T. Domazet-Loso, and T. C. G. Bosch (2012)
PNAS 109, 19374-19379
   Abstract »    Full Text »    PDF »
Regulation of intestinal homeostasis by innate and adaptive immunity.
H. Kayama and K. Takeda (2012)
Int. Immunol. 24, 673-680
   Abstract »    Full Text »    PDF »
Intranasal priming of newborn mice with microbial extracts increases opsonic factors and mature CD11c+ cells in the airway.
K. Kasahara, Y. Matsumura, K. Ui, K. Kasahara, Y. Komatsu, K. Mikasa, and E. Kita (2012)
Am J Physiol Lung Cell Mol Physiol 303, L834-L843
   Abstract »    Full Text »    PDF »
Differential Interleukin-10 (IL-10) and IL-23 Production by Human Blood Monocytes and Dendritic Cells in Response to Commensal Enteric Bacteria.
J. Manuzak, S. Dillon, and C. Wilson (2012)
Clin. Vaccine Immunol. 19, 1207-1217
   Abstract »    Full Text »    PDF »
A specific role for TLR1 in protective TH17 immunity during mucosal infection.
R. W. DePaolo, K. Kamdar, S. Khakpour, Y. Sugiura, W. Wang, and B. Jabri (2012)
J. Exp. Med. 209, 1437-1444
   Abstract »    Full Text »    PDF »
Interactions Between the Microbiota and the Immune System.
L. V. Hooper, D. R. Littman, and A. J. Macpherson (2012)
Science 336, 1268-1273
   Abstract »    Full Text »    PDF »
Infectious (Non)tolerance--Frustrated Commensalism Gone Awry?.
J. C. Nussbaum and R. M. Locksley (2012)
Cold Spring Harb Perspect Biol 4, a007328
   Abstract »    Full Text »    PDF »
Altered gut microbiota composition in immune-impaired Nod2-/- mice.
S. Mondot, F. Barreau, Z. Al Nabhani, M. Dussaillant, K. Le Roux, J. Dore, M. Leclerc, J.-P. Hugot, and P. Lepage (2012)
Gut 61, 634-635
   Full Text »    PDF »
Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells.
P. Konieczna, D. Groeger, M. Ziegler, R. Frei, R. Ferstl, F. Shanahan, E. M. M. Quigley, B. Kiely, C. A. Akdis, and L. O'Mahony (2012)
Gut 61, 354-366
   Abstract »    Full Text »    PDF »
Bacillus subtilis-Mediated Protection from Citrobacter rodentium-Associated Enteric Disease Requires espH and Functional Flagella.
S. E. Jones and K. L. Knight (2012)
Infect. Immun. 80, 710-719
   Abstract »    Full Text »    PDF »
Drosophila Microbiome Modulates Host Developmental and Metabolic Homeostasis via Insulin Signaling.
S. C. Shin, S.-H. Kim, H. You, B. Kim, A. C. Kim, K.-A. Lee, J.-H. Yoon, J.-H. Ryu, and W.-J. Lee (2011)
Science 334, 670-674
   Abstract »    Full Text »    PDF »
Assessment of Lactobacillus gasseri as a Candidate Oral Vaccine Vector.
L. Stoeker, S. Nordone, S. Gunderson, L. Zhang, A. Kajikawa, A. LaVoy, M. Miller, T. R. Klaenhammer, and G. A. Dean (2011)
Clin. Vaccine Immunol. 18, 1834-1844
   Abstract »    Full Text »    PDF »
The human metagenome: our other genome?.
T. Bruls and J. Weissenbach (2011)
Hum. Mol. Genet. 20, R142-R148
   Abstract »    Full Text »    PDF »
The Antibacterial Lectin RegIII{gamma} Promotes the Spatial Segregation of Microbiota and Host in the Intestine.
S. Vaishnava, M. Yamamoto, K. M. Severson, K. A. Ruhn, X. Yu, O. Koren, R. Ley, E. K. Wakeland, and L. V. Hooper (2011)
Science 334, 255-258
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882