Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 332 (6035): 1322-1326

Copyright © 2011 by the American Association for the Advancement of Science

Phosphoproteomic Analysis Identifies Grb10 as an mTORC1 Substrate That Negatively Regulates Insulin Signaling

Yonghao Yu,1 Sang-Oh Yoon,1,* George Poulogiannis,2 Qian Yang,1,3 Xiaoju Max Ma,1,{dagger} Judit Villén,1,{ddagger} Neil Kubica,1,§ Gregory R. Hoffman,1 Lewis C. Cantley,2 Steven P. Gygi,1,|| John Blenis1,||

Abstract: The evolutionarily conserved serine-threonine kinase mammalian target of rapamycin (mTOR) plays a critical role in regulating many pathophysiological processes. Functional characterization of the mTOR signaling pathways, however, has been hampered by the paucity of known substrates. We used large-scale quantitative phosphoproteomics experiments to define the signaling networks downstream of mTORC1 and mTORC2. Characterization of one mTORC1 substrate, the growth factor receptor–bound protein 10 (Grb10), showed that mTORC1-mediated phosphorylation stabilized Grb10, leading to feedback inhibition of the phosphatidylinositol 3-kinase (PI3K) and extracellular signal–regulated, mitogen-activated protein kinase (ERK-MAPK) pathways. Grb10 expression is frequently down-regulated in various cancers, and loss of Grb10 and loss of the well-established tumor suppressor phosphatase PTEN appear to be mutually exclusive events, suggesting that Grb10 might be a tumor suppressor regulated by mTORC1.

1 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
2 Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
3 Harvard School of Dental Medicine, Boston, MA 02115, USA.

* Present address: Department of Cancer and Cell Biology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.

{dagger} Present address: Department of Research Oncology Diagnostics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.

{ddagger} Present address: Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.

§ Present address: Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA.

|| To whom correspondence should be addressed. E-mail: steven_gygi{at}hms.harvard.edu (S.P.G); john_blenis{at}hms.harvard.edu (J.B.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Phosphorylation of Grb14 BPS domain by GSK-3 correlates with complex forming of Grb14 and insulin receptor.
J. Taira and Y. Higashimoto (2014)
J. Biochem.
   Abstract »    Full Text »    PDF »
mTORC1 Promotes Denervation-Induced Muscle Atrophy Through a Mechanism Involving the Activation of FoxO and E3 Ubiquitin Ligases.
H. Tang, K. Inoki, M. Lee, E. Wright, A. Khuong, A. Khuong, S. Sugiarto, M. Garner, J. Paik, R. A. DePinho, et al. (2014)
Science Signaling 7, ra18
   Abstract »    Full Text »    PDF »
The Adaptor Protein p66Shc Inhibits mTOR-Dependent Anabolic Metabolism.
M. A. Soliman, A. M. Abdel Rahman, D. W. Lamming, K. Birsoy, J. Pawling, M. E. Frigolet, H. Lu, I. G. Fantus, A. Pasculescu, Y. Zheng, et al. (2014)
Science Signaling 7, ra17
   Abstract »    Full Text »    PDF »
Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5'TOP mRNA translation.
J. Tcherkezian, M. Cargnello, Y. Romeo, E. L. Huttlin, G. Lavoie, S. P. Gygi, and P. P. Roux (2014)
Genes & Dev. 28, 357-371
   Abstract »    Full Text »    PDF »
Adaptation to mTOR kinase inhibitors by amplification of eIF4E to maintain cap-dependent translation.
C. L. Cope, R. Gilley, K. Balmanno, M. J. Sale, K. D. Howarth, M. Hampson, P. D. Smith, S. M. Guichard, and S. J. Cook (2014)
J. Cell Sci. 127, 788-800
   Abstract »    Full Text »    PDF »
Phase II study of everolimus in children and adults with neurofibromatosis type 2 and progressive vestibular schwannomas.
M. A. Karajannis, G. Legault, M. Hagiwara, F. G. Giancotti, A. Filatov, A. Derman, T. Hochman, J. D. Goldberg, E. Vega, J. H. Wisoff, et al. (2014)
Neuro Oncology 16, 292-297
   Abstract »    Full Text »    PDF »
Genetic and Pharmacologic Evidence That mTOR Targeting Outweighs mTORC1 Inhibition as an Antimyeloma Strategy.
X. Chen, E. Diaz-Rodriguez, E. M. Ocio, B. Paiva, D. S. Mortensen, A. Lopez-Girona, R. Chopra, J. S. Miguel, and A. Pandiella (2014)
Mol. Cancer Ther. 13, 504-516
   Abstract »    Full Text »    PDF »
The Role of Target of Rapamycin Signaling Networks in Plant Growth and Metabolism.
Y. Xiong and J. Sheen (2014)
Plant Physiology 164, 499-512
   Abstract »    Full Text »    PDF »
Hyperactivation of Mammalian Target of Rapamycin Complex 1 (mTORC1) Promotes Breast Cancer Progression through Enhancing Glucose Starvation-induced Autophagy and Akt Signaling.
Y. Chen, H. Wei, F. Liu, and J.-L. Guan (2014)
J. Biol. Chem. 289, 1164-1173
   Abstract »    Full Text »    PDF »
Casein Kinase 1{varepsilon} Promotes Cell Proliferation by Regulating mRNA Translation.
S. Shin, L. Wolgamott, P. P. Roux, and S.-O. Yoon (2014)
Cancer Res. 74, 201-211
   Abstract »    Full Text »    PDF »
Insulin Receptor Signaling in Normal and Insulin-Resistant States.
J. Boucher, A. Kleinridders, and C. R. Kahn (2014)
Cold Spring Harb Perspect Biol 6, a009191
   Abstract »    Full Text »    PDF »
The Coming of Age of Phosphoproteomics--from Large Data Sets to Inference of Protein Functions.
P. P. Roux and P. Thibault (2013)
Mol. Cell. Proteomics 12, 3453-3464
   Abstract »    Full Text »    PDF »
Stable Isotope Metabolic Labeling-based Quantitative Phosphoproteomic Analysis of Arabidopsis Mutants Reveals Ethylene-regulated Time-dependent Phosphoproteins and Putative Substrates of Constitutive Triple Response 1 Kinase.
Z. Yang, G. Guo, M. Zhang, C. Y. Liu, Q. Hu, H. Lam, H. Cheng, Y. Xue, J. Li, and N. Li (2013)
Mol. Cell. Proteomics 12, 3559-3582
   Abstract »    Full Text »    PDF »
Status of Large-scale Analysis of Post-translational Modifications by Mass Spectrometry.
J. V. Olsen and M. Mann (2013)
Mol. Cell. Proteomics 12, 3444-3452
   Abstract »    Full Text »    PDF »
Regulation of OSR1 and the sodium, potassium, two chloride cotransporter by convergent signals.
S. Sengupta, A. Lorente-Rodriguez, S. Earnest, S. Stippec, X. Guo, D. C. Trudgian, H. Mirzaei, and M. H. Cobb (2013)
PNAS 110, 18826-18831
   Abstract »    Full Text »    PDF »
mTOR Signaling Feedback Modulates Mammary Epithelial Differentiation and Restrains Invasion Downstream of PTEN Loss.
S. Ghosh, L. Varela, A. Sood, B. H. Park, and T. L. Lotan (2013)
Cancer Res. 73, 5218-5231
   Abstract »    Full Text »    PDF »
Mechanistic target of rapamycin controls homeostasis of adipogenesis.
M.-S. Yoon, C. Zhang, Y. Sun, C. J. Schoenherr, and J. Chen (2013)
J. Lipid Res. 54, 2166-2173
   Abstract »    Full Text »    PDF »
Lymphatic Endothelial Differentiation in Pulmonary Lymphangioleiomyomatosis Cells.
J. M. Davis, E. Hyjek, A. N. Husain, L. Shen, J. Jones, and L. A. Schuger (2013)
Journal of Histochemistry & Cytochemistry 61, 580-590
   Abstract »    Full Text »    PDF »
Evidence for Rapamycin Toxicity in Pancreatic {beta}-Cells and a Review of the Underlying Molecular Mechanisms.
A. D. Barlow, M. L. Nicholson, and T. P. Herbert (2013)
Diabetes 62, 2674-2682
   Abstract »    Full Text »    PDF »
mTORC1 Phosphorylation Sites Encode Their Sensitivity to Starvation and Rapamycin.
S. A. Kang, M. E. Pacold, C. L. Cervantes, D. Lim, H. J. Lou, K. Ottina, N. S. Gray, B. E. Turk, M. B. Yaffe, and D. M. Sabatini (2013)
Science 341, 1236566
   Abstract »    Full Text »    PDF »
The Crystal Structure of Six-transmembrane Epithelial Antigen of the Prostate 4 (Steap4), a Ferri/Cuprireductase, Suggests a Novel Interdomain Flavin-binding Site.
G. H. Gauss, M. D. Kleven, A. K. Sendamarai, M. D. Fleming, and C. M. Lawrence (2013)
J. Biol. Chem. 288, 20668-20682
   Abstract »    Full Text »    PDF »
Hyperphosphorylation of polycystin-2 at a critical residue in disease reveals an essential role for polycystin-1-regulated dephosphorylation.
A. J. Streets, O. Wessely, D. J. M. Peters, and A. C. M. Ong (2013)
Hum. Mol. Genet. 22, 1924-1939
   Abstract »    Full Text »    PDF »
Protein Phosphatase 2A and DNA-dependent Protein Kinase Are Involved in Mediating Rapamycin-induced Akt Phosphorylation.
Y. Li, X. Wang, P. Yue, H. Tao, S. S. Ramalingam, T. K. Owonikoko, X. Deng, Y. Wang, H. Fu, F. R. Khuri, et al. (2013)
J. Biol. Chem. 288, 13215-13224
   Abstract »    Full Text »    PDF »
Mammalian Target of Rapamycin Complex 1 (mTORC1)-mediated Phosphorylation Stabilizes ISCU Protein: IMPLICATIONS FOR IRON METABOLISM.
P. La, G. Yang, and P. A. Dennery (2013)
J. Biol. Chem. 288, 12901-12909
   Abstract »    Full Text »    PDF »
Dual PI3K/AKT/mTOR Inhibitor BEZ235 Synergistically Enhances the Activity of JAK2 Inhibitor against Cultured and Primary Human Myeloproliferative Neoplasm Cells.
W. Fiskus, S. Verstovsek, T. Manshouri, J. E. Smith, K. Peth, S. Abhyankar, J. McGuirk, and K. N. Bhalla (2013)
Mol. Cancer Ther. 12, 577-588
   Abstract »    Full Text »    PDF »
Regulation of mTORC1 and its impact on gene expression at a glance.
M. Laplante and D. M. Sabatini (2013)
J. Cell Sci. 126, 1713-1719
   Full Text »    PDF »
A RANKL-PKC{beta}-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts.
M. Ferron, C. Settembre, J. Shimazu, J. Lacombe, S. Kato, D. J. Rawlings, A. Ballabio, and G. Karsenty (2013)
Genes & Dev. 27, 955-969
   Abstract »    Full Text »    PDF »
Insulin Signaling in Type 2 Diabetes: EXPERIMENTAL AND MODELING ANALYSES REVEAL MECHANISMS OF INSULIN RESISTANCE IN HUMAN ADIPOCYTES.
C. Brannmark, E. Nyman, S. Fagerholm, L. Bergenholm, E.-M. Ekstrand, G. Cedersund, and P. Stralfors (2013)
J. Biol. Chem. 288, 9867-9880
   Abstract »    Full Text »    PDF »
Large FK506-Binding Proteins Shape the Pharmacology of Rapamycin.
A. M. Marz, A.-K. Fabian, C. Kozany, A. Bracher, and F. Hausch (2013)
Mol. Cell. Biol. 33, 1357-1367
   Abstract »    Full Text »    PDF »
Cyr61, a Matricellular Protein, Is Needed for Dendritic Arborization of Hippocampal Neurons.
A. R. Malik, M. Urbanska, A. Gozdz, L. J. Swiech, A. Nagalski, M. Perycz, M. Blazejczyk, and J. Jaworski (2013)
J. Biol. Chem. 288, 8544-8559
   Abstract »    Full Text »    PDF »
Stimulation of de Novo Pyrimidine Synthesis by Growth Signaling Through mTOR and S6K1.
I. Ben-Sahra, J. J. Howell, J. M. Asara, and B. D. Manning (2013)
Science 339, 1323-1328
   Abstract »    Full Text »    PDF »
Quantitative Phosphoproteomics Reveal mTORC1 Activates de Novo Pyrimidine Synthesis.
A. M. Robitaille, S. Christen, M. Shimobayashi, M. Cornu, L. L. Fava, S. Moes, C. Prescianotto-Baschong, U. Sauer, P. Jenoe, and M. N. Hall (2013)
Science 339, 1320-1323
   Abstract »    Full Text »    PDF »
Molecular Dissection of AKT Activation in Lung Cancer Cell Lines.
Y. Guo, J. Du, and D. J. Kwiatkowski (2013)
Mol. Cancer Res. 11, 282-293
   Abstract »    Full Text »    PDF »
The Insulin Receptor: Both a Prototypical and Atypical Receptor Tyrosine Kinase.
S. R. Hubbard (2013)
Cold Spring Harb Perspect Biol 5, a008946
   Abstract »    Full Text »    PDF »
Posttranslational Modifications of the Retinoblastoma Tumor Suppressor Protein as Determinants of Function.
J. I. MacDonald and F. A. Dick (2013)
Genes & Cancer
   Abstract »    Full Text »    PDF »
Host mTORC1 Signaling Regulates Andes Virus Replication.
S. McNulty, M. Flint, S. T. Nichol, and C. F. Spiropoulou (2013)
J. Virol. 87, 912-922
   Abstract »    Full Text »    PDF »
BSTA Promotes mTORC2-Mediated Phosphorylation of Akt1 to Suppress Expression of FoxC2 and Stimulate Adipocyte Differentiation.
Y. Yao, M. Suraokar, B. G. Darnay, B. G. Hollier, T. E. Shaiken, T. Asano, C.-H. Chen, B. H.- J. Chang, Y. Lu, G. B. Mills, et al. (2013)
Science Signaling 6, ra2
   Abstract »    Full Text »    PDF »
Mammalian Target of Rapamycin (mTOR) Signaling Network in Skeletal Myogenesis.
Y. Ge and J. Chen (2012)
J. Biol. Chem. 287, 43928-43935
   Abstract »    Full Text »    PDF »
New Role for Grb10 Signaling in the Pancreas.
A. Ward (2012)
Diabetes 61, 3066-3067
   Full Text »    PDF »
Disruption of Growth Factor Receptor-Binding Protein 10 in the Pancreas Enhances {beta}-Cell Proliferation and Protects Mice From Streptozotocin-Induced {beta}-Cell Apoptosis.
J. Zhang, N. Zhang, M. Liu, X. Li, L. Zhou, W. Huang, Z. Xu, J. Liu, N. Musi, R. A. DeFronzo, et al. (2012)
Diabetes 61, 3189-3198
   Abstract »    Full Text »    PDF »
mTOR-Dependent Cell Survival Mechanisms.
C.-M. Hung, L. Garcia-Haro, C. A. Sparks, and D. A. Guertin (2012)
Cold Spring Harb Perspect Biol 4, a008771
   Abstract »    Full Text »    PDF »
Targeted Proteomics for Determining Phosphorylation Site-Specific Associations in Cardiovascular Disease.
S. J. Cordwell and M. Y. White (2012)
Circulation 126, 1803-1807
   Full Text »    PDF »
Graded loss of tuberin in an allelic series of brain models of TSC correlates with survival, and biochemical, histological and behavioral features.
E. Yuan, P. T. Tsai, E. Greene-Colozzi, M. Sahin, D. J. Kwiatkowski, and I. A. Malinowska (2012)
Hum. Mol. Genet. 21, 4286-4300
   Abstract »    Full Text »    PDF »
Protein abundance is key to distinguish promiscuous from functional phosphorylation based on evolutionary information.
E. D. Levy, S. W. Michnick, and C. R. Landry (2012)
Phil Trans R Soc B 367, 2594-2606
   Abstract »    Full Text »    PDF »
PDGF Receptor Alpha Is an Alternative Mediator of Rapamycin-Induced Akt Activation: Implications for Combination Targeted Therapy of Synovial Sarcoma.
A. L. Ho, S. D. Vasudeva, M. Lae, T. Saito, V. Barbashina, C. R. Antonescu, M. Ladanyi, and G. K. Schwartz (2012)
Cancer Res. 72, 4515-4525
   Abstract »    Full Text »    PDF »
Comment on "A Dynamic Network Model of mTOR Signaling Reveals TSC-Independent mTORC2 Regulation": Building a Model of the mTOR Signaling Network with a Potentially Faulty Tool.
B. D. Manning (2012)
Science Signaling 5, lc3
   Abstract »    Full Text »    PDF »
Response to Comment on "A Dynamic Network Model of mTOR Signaling Reveals TSC-Independent mTORC2 Regulation": Building a Model of the mTOR Signaling Network with a Potentially Faulty Tool.
P. Dalle Pezze, A. G. Sonntag, D. P. Shanley, and K. Thedieck (2012)
Science Signaling 5, lc4
   Abstract »    Full Text »    PDF »
MMFPh: a maximal motif finder for phosphoproteomics datasets.
T. Wang, A. N. Kettenbach, S. A. Gerber, and C. Bailey-Kellogg (2012)
Bioinformatics 28, 1562-1570
   Abstract »    Full Text »    PDF »
Role of PRAS40 in Akt and mTOR signaling in health and disease.
C. Wiza, E. B. M. Nascimento, and D. M. Ouwens (2012)
Am J Physiol Endocrinol Metab 302, E1453-E1460
   Abstract »    Full Text »    PDF »
Inhibition of mTORC1 Kinase Activates Smads 1 and 5 but Not Smad8 in Human Prostate Cancer Cells, Mediating Cytostatic Response to Rapamycin.
R. S. Wahdan-Alaswad, K. L. Bane, K. Song, D. T. N. Shola, J. A. Garcia, and D. Danielpour (2012)
Mol. Cancer Res. 10, 821-833
   Abstract »    Full Text »    PDF »
Leucine and mTORC1: a complex relationship.
K. M. Dodd and A. R. Tee (2012)
Am J Physiol Endocrinol Metab 302, E1329-E1342
   Abstract »    Full Text »    PDF »
Predominance of mTORC1 over mTORC2 in the Regulation of Proliferation of Ovarian Cancer Cells: Therapeutic Implications.
J. C. Montero, X. Chen, A. Ocana, and A. Pandiella (2012)
Mol. Cancer Ther. 11, 1342-1352
   Abstract »    Full Text »    PDF »
Structure-Activity Analysis of Niclosamide Reveals Potential Role for Cytoplasmic pH in Control of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling.
B. D. Fonseca, G. H. Diering, M. A. Bidinosti, K. Dalal, T. Alain, A. D. Balgi, R. Forestieri, M. Nodwell, C. V. Rajadurai, C. Gunaratnam, et al. (2012)
J. Biol. Chem. 287, 17530-17545
   Abstract »    Full Text »    PDF »
Global Detection of Protein Kinase D-dependent Phosphorylation Events in Nocodazole-treated Human Cells.
M. Franz-Wachtel, S. A. Eisler, K. Krug, S. Wahl, A. Carpy, A. Nordheim, K. Pfizenmaier, A. Hausser, and B. Macek (2012)
Mol. Cell. Proteomics 11, 160-170
   Abstract »    Full Text »    PDF »
Regulation of mTOR Complex 2 Signaling in Neurofibromatosis 2-Deficient Target Cell Types.
M. F. James, E. Stivison, R. Beauchamp, S. Han, H. Li, M. R. Wallace, J. F. Gusella, A. O. Stemmer-Rachamimov, and V. Ramesh (2012)
Mol. Cancer Res. 10, 649-659
   Abstract »    Full Text »    PDF »
Dual mTORC1/2 and HER2 Blockade Results in Antitumor Activity in Preclinical Models of Breast Cancer Resistant to Anti-HER2 Therapy.
C. Garcia-Garcia, Y. H. Ibrahim, V. Serra, M. T. Calvo, M. Guzman, J. Grueso, C. Aura, J. Perez, K. Jessen, Y. Liu, et al. (2012)
Clin. Cancer Res. 18, 2603-2612
   Abstract »    Full Text »    PDF »
Signal transduction pathways in FSH regulation of rat Sertoli cell proliferation.
M. F. Riera, M. Regueira, M. N. Galardo, E. H. Pellizzari, S. B. Meroni, and S. B. Cigorraga (2012)
Am J Physiol Endocrinol Metab 302, E914-E923
   Abstract »    Full Text »    PDF »
Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy.
J. S. Logue and D. K. Morrison (2012)
Genes & Dev. 26, 641-650
   Abstract »    Full Text »    PDF »
Negative Feedback and Adaptive Resistance to the Targeted Therapy of Cancer.
S. Chandarlapaty (2012)
Cancer Discovery 2, 311-319
   Abstract »    Full Text »    PDF »
Deconvolution of mTORC2 "in Silico".
D. C. Fingar and K. Inoki (2012)
Science Signaling 5, pe12
   Abstract »    Full Text »    PDF »
A Dynamic Network Model of mTOR Signaling Reveals TSC-Independent mTORC2 Regulation.
P. Dalle Pezze, A. G. Sonntag, A. Thien, M. T. Prentzell, M. Godel, S. Fischer, E. Neumann-Haefelin, T. B. Huber, R. Baumeister, D. P. Shanley, et al. (2012)
Science Signaling 5, ra25
   Abstract »    Full Text »    PDF »
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB.
C. Settembre, R. Zoncu, D. L. Medina, F. Vetrini, S. Erdin, S. Erdin, T. Huynh, M. Ferron, G. Karsenty, M. C. Vellard, et al. (2012)
EMBO J. 31, 1095-1108
   Abstract »    Full Text »    PDF »
Targeting the mTOR/4E-BP Pathway in Endometrial Cancer.
S. B. Korets, S. Czok, S. V. Blank, J. P. Curtin, and R. J. Schneider (2011)
Clin. Cancer Res. 17, 7518-7528
   Abstract »    Full Text »    PDF »
Targeting of Insulin-Like Growth Factor Type 1 Receptor in Ewing Sarcoma: Unfulfilled Promise or a Promising Beginning?.
A. L. Ho and G. K. Schwartz (2011)
J. Clin. Oncol. 29, 4581-4583
   Full Text »    PDF »
Liver-specific Inducible Nitric-oxide Synthase Expression Is Sufficient to Cause Hepatic Insulin Resistance and Mild Hyperglycemia in Mice.
S. Shinozaki, C. S. Choi, N. Shimizu, M. Yamada, M. Kim, T. Zhang, H. H. Dong, Y.-B. Kim, and M. Kaneki (2011)
J. Biol. Chem. 286, 34959-34975
   Abstract »    Full Text »    PDF »
The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile.
B. T. Wang, G. S. Ducker, A. J. Barczak, R. Barbeau, D. J. Erle, and K. M. Shokat (2011)
PNAS 108, 15201-15206
   Abstract »    Full Text »    PDF »
Regulation of TFEB and V-ATPases by mTORC1.
S. Pena-Llopis, S. Vega-Rubin-de-Celis, J. C. Schwartz, N. C. Wolff, T. A. T. Tran, L. Zou, X.-J. Xie, D. R. Corey, and J. Brugarolas (2011)
EMBO J. 30, 3242-3258
   Abstract »    Full Text »    PDF »
mTOR Inhibition, the Second Generation: ATP-Competitive mTOR Inhibitor Initiates Unexpected Receptor Tyrosine Kinase-Driven Feedback Loop.
M. Keniry and R. Parsons (2011)
Cancer Discovery 1, 203-204
   Abstract »    Full Text »    PDF »
New mTOR Targets Grb Attention.
S. S. Yea and D. A. Fruman (2011)
Science 332, 1270-1271
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882