Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 332 (6036): 1433-1435

Copyright © 2011 by the American Association for the Advancement of Science

AMPK Is a Direct Adenylate Charge-Regulated Protein Kinase

Jonathan S. Oakhill,* Rohan Steel, Zhi-Ping Chen, John W. Scott, Naomi Ling, Shanna Tam, Bruce E. Kemp

Abstract: The adenosine monophosphate (AMP)–activated protein kinase (AMPK) regulates whole-body and cellular energy balance in response to energy demand and supply. AMPK is an αβ{gamma} heterotrimer activated by decreasing concentrations of adenosine triphosphate (ATP) and increasing AMP concentrations. AMPK activation depends on phosphorylation of the α catalytic subunit on threonine-172 (Thr172) by kinases LKB1 or CaMKKβ, and this is promoted by AMP binding to the {gamma} subunit. AMP sustains activity by inhibiting dephosphorylation of α-Thr172, whereas ATP promotes dephosphorylation. Adenosine diphosphate (ADP), like AMP, bound to {gamma} sites 1 and 3 and stimulated α-Thr172 phosphorylation. However, in contrast to AMP, ADP did not directly activate phosphorylated AMPK. In this way, both ADP/ATP and AMP/ATP ratios contribute to AMPK regulation.

Department of Protein Chemistry and Metabolism, St. Vincent’s Institute of Medical Research, University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Victoria, Australia.

* To whom correspondence should be addressed. E-mail: joakhill{at}svi.edu.au


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
AMP-activated Protein Kinase {alpha}2 Protects against Liver Injury from Metastasized Tumors via Reduced Glucose Deprivation-induced Oxidative Stress.
S.-L. Qiu, Z.-C. Xiao, C.-M. Piao, Y.-L. Xian, L.-X. Jia, Y.-F. Qi, J.-H. Han, Y.-y. Zhang, and J. Du (2014)
J. Biol. Chem. 289, 9449-9459
   Abstract »    Full Text »    PDF »
AMPK: Regulating Energy Balance at the Cellular and Whole Body Levels.
D. G. Hardie and M. L. J. Ashford (2014)
Physiology 29, 99-107
   Abstract »    Full Text »    PDF »
C-Peptide Activates AMPK{alpha} and Prevents ROS-Mediated Mitochondrial Fission and Endothelial Apoptosis in Diabetes.
M. P. Bhatt, Y.-C. Lim, Y.-M. Kim, and K.-S. Ha (2013)
Diabetes 62, 3851-3862
   Abstract »    Full Text »    PDF »
Fueling Immunity: Insights into Metabolism and Lymphocyte Function.
E. L. Pearce, M. C. Poffenberger, C.-H. Chang, and R. G. Jones (2013)
Science 342, 1242454
   Abstract »    Full Text »    PDF »
ABI1 and PP2CA Phosphatases Are Negative Regulators of Snf1-Related Protein Kinase1 Signaling in Arabidopsis.
A. Rodrigues, M. Adamo, P. Crozet, L. Margalha, A. Confraria, C. Martinho, A. Elias, A. Rabissi, V. Lumbreras, M. Gonzalez-Guzman, et al. (2013)
PLANT CELL 25, 3871-3884
   Abstract »    Full Text »    PDF »
AMPK couples plasma renin to cellular metabolism by phosphorylation of ACC1.
S. A. Fraser, S.-W. Choy, N. M. Pastor-Soler, H. Li, M. R. P. Davies, N. Cook, M. Katerelos, P. F. Mount, K. Gleich, J. L. McRae, et al. (2013)
Am J Physiol Renal Physiol 305, F679-F690
   Abstract »    Full Text »    PDF »
Exercise, GLUT4, and Skeletal Muscle Glucose Uptake.
E. A. Richter and M. Hargreaves (2013)
Physiol Rev 93, 993-1017
   Abstract »    Full Text »    PDF »
AMPK: A Target for Drugs and Natural Products With Effects on Both Diabetes and Cancer.
D. G. Hardie (2013)
Diabetes 62, 2164-2172
   Abstract »    Full Text »    PDF »
AMP-Activated Protein Kinase Restricts IFN-{gamma} Signaling.
G. P. Meares, H. Qin, Y. Liu, A. T. Holdbrooks, and E. N. Benveniste (2013)
J. Immunol. 190, 372-380
   Abstract »    Full Text »    PDF »
Mitochondrial Porin Por1 and Its Homolog Por2 Contribute to the Positive Control of Snf1 Protein Kinase in Saccharomyces cerevisiae.
V. Strogolova, M. Orlova, A. Shevade, and S. Kuchin (2012)
Eukaryot. Cell 11, 1568-1572
   Abstract »    Full Text »    PDF »
Negative Regulation of AMP-activated Protein Kinase (AMPK) Activity by Macrophage Migration Inhibitory Factor (MIF) Family Members in Non-small Cell Lung Carcinomas.
S. E. Brock, B. E. Rendon, K. Yaddanapudi, and R. A. Mitchell (2012)
J. Biol. Chem. 287, 37917-37925
   Abstract »    Full Text »    PDF »
Improved Growth and Stress Tolerance in the Arabidopsis oxt1 Mutant Triggered by Altered Adenine Metabolism.
S. Sukrong, K.-Y. Yun, P. Stadler, C. Kumar, T. Facciuolo, B. A. Moffatt, and D. L. Falcone (2012)
Mol Plant 5, 1310-1332
   Abstract »    Full Text »    PDF »
Kinase Suppressor of Ras 2 (KSR2) Regulates Tumor Cell Transformation via AMPK.
M. R. Fernandez, M. D. Henry, and R. E. Lewis (2012)
Mol. Cell. Biol. 32, 3718-3731
   Abstract »    Full Text »    PDF »
Mammalian target of rapamycin and the kidney. I. The signaling pathway.
W. Lieberthal and J. S. Levine (2012)
Am J Physiol Renal Physiol 303, F1-F10
   Abstract »    Full Text »    PDF »
Neuropathogenic role of adenylate kinase-1 in A{beta}-mediated tau phosphorylation via AMPK and GSK3{beta}.
H. Park, T.-I. Kam, Y. Kim, H. Choi, Y. Gwon, C. Kim, J.-Y. Koh, and Y.-K. Jung (2012)
Hum. Mol. Genet. 21, 2725-2737
   Abstract »    Full Text »    PDF »
Overexpression of AMP-metabolizing enzymes controls adenine nucleotide levels and AMPK activation in HEK293T cells.
C. Plaideau, J. Liu, J. Hartleib-Geschwindner, L. Bastin-Coyette, F. Bontemps, J. Oscarsson, L. Hue, and M. H. Rider (2012)
FASEB J 26, 2685-2694
   Abstract »    Full Text »    PDF »
Heterotrimer-independent regulation of activation-loop phosphorylation of Snf1 protein kinase involves two protein phosphatases.
A. Ruiz, Y. Liu, X. Xu, and M. Carlson (2012)
PNAS 109, 8652-8657
   Abstract »    Full Text »    PDF »
The Ancient Drug Salicylate Directly Activates AMP-Activated Protein Kinase.
S. A. Hawley, M. D. Fullerton, F. A. Ross, J. D. Schertzer, C. Chevtzoff, K. J. Walker, M. W. Peggie, D. Zibrova, K. A. Green, K. J. Mustard, et al. (2012)
Science 336, 918-922
   Abstract »    Full Text »    PDF »
Redox implications of AMPK-mediated signal transduction beyond energetic clues.
S. Cardaci, G. Filomeni, and M. R. Ciriolo (2012)
J. Cell Sci. 125, 2115-2125
   Abstract »    Full Text »    PDF »
Organismal Carbohydrate and Lipid Homeostasis.
D. G. Hardie (2012)
Cold Spring Harb Perspect Biol 4, a006031
   Abstract »    Full Text »    PDF »
Vitamin C Deficiency Activates the Purine Nucleotide Cycle in Zebrafish.
J. S. Kirkwood, K. M. Lebold, C. L. Miranda, C. L. Wright, G. W. Miller, R. L. Tanguay, C. L. Barton, M. G. Traber, and J. F. Stevens (2012)
J. Biol. Chem. 287, 3833-3841
   Abstract »    Full Text »    PDF »
{delta}-Opioid Receptors Stimulate the Metabolic Sensor AMP-Activated Protein Kinase through Coincident Signaling with Gq/11-Coupled Receptors.
M. C. Olianas, S. Dedoni, A. Olianas, and P. Onali (2012)
Mol. Pharmacol. 81, 154-165
   Abstract »    Full Text »    PDF »
CTRP1 Protein Enhances Fatty Acid Oxidation via AMP-activated Protein Kinase (AMPK) Activation and Acetyl-CoA Carboxylase (ACC) Inhibition.
J. M. Peterson, S. Aja, Z. Wei, and G. W. Wong (2012)
J. Biol. Chem. 287, 1576-1587
   Abstract »    Full Text »    PDF »
Role of AMPK-mTOR-Ulk1/2 in the Regulation of Autophagy: Cross Talk, Shortcuts, and Feedbacks.
S. Alers, A. S. Loffler, S. Wesselborg, and B. Stork (2012)
Mol. Cell. Biol. 32, 2-11
   Abstract »    Full Text »    PDF »
Targeting therapeutic effects: subcellular location matters. Focus on "Pharmacological AMP-kinase activators have compartment-specific effects on cell physiology".
J. Creighton (2011)
Am J Physiol Cell Physiol 301, C1293-C1295
   Full Text »    PDF »
AMPK protects proximal tubular cells from stress-induced apoptosis by an ATP-independent mechanism: potential role of Akt activation.
W. Lieberthal, L. Zhang, V. A. Patel, and J. S. Levine (2011)
Am J Physiol Renal Physiol 301, F1177-F1192
   Abstract »    Full Text »    PDF »
Suppression of 5'-Nucleotidase Enzymes Promotes AMP-activated Protein Kinase (AMPK) Phosphorylation and Metabolism in Human and Mouse Skeletal Muscle.
S. S. Kulkarni, H. K. R. Karlsson, F. Szekeres, A. V. Chibalin, A. Krook, and J. R. Zierath (2011)
J. Biol. Chem. 286, 34567-34574
   Abstract »    Full Text »    PDF »
AMP-activated protein kinase (AMPK) {beta}1{beta}2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise.
H. M. O'Neill, S. J. Maarbjerg, J. D. Crane, J. Jeppesen, S. B. Jorgensen, J. D. Schertzer, O. Shyroka, B. Kiens, B. J. van Denderen, M. A. Tarnopolsky, et al. (2011)
PNAS 108, 16092-16097
   Abstract »    Full Text »    PDF »
AMP-activated protein kinase--an energy sensor that regulates all aspects of cell function.
D. G. Hardie (2011)
Genes & Dev. 25, 1895-1908
   Abstract »    Full Text »    PDF »
ADaPting to Energetic Stress.
M. L. Bland and M. J. Birnbaum (2011)
Science 332, 1387-1388
   Abstract »    Full Text »    PDF »
Adenosine Monophosphate-Activated Protein Kinase: A Central Regulator of Metabolism with Roles in Diabetes, Cancer, and Viral Infection.
D. G. Hardie (2011)
Cold Spring Harb Symp Quant Biol 76, 155-164
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882