Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 332 (6036): 1443-1446

Copyright © 2011 by the American Association for the Advancement of Science

SIRT6 Promotes DNA Repair Under Stress by Activating PARP1

Zhiyong Mao, Christopher Hine, Xiao Tian, Michael Van Meter, Matthew Au, Amita Vaidya, Andrei Seluanov,* Vera Gorbunova*

Abstract: Sirtuin 6 (SIRT6) is a mammalian homolog of the yeast Sir2 deacetylase. Mice deficient for SIRT6 exhibit genome instability. Here, we show that in mammalian cells subjected to oxidative stress SIRT6 is recruited to the sites of DNA double-strand breaks (DSBs) and stimulates DSB repair, through both nonhomologous end joining and homologous recombination. Our results indicate that SIRT6 physically associates with poly[adenosine diphosphate (ADP)–ribose] polymerase 1 (PARP1) and mono-ADP-ribosylates PARP1 on lysine residue 521, thereby stimulating PARP1 poly-ADP-ribosylase activity and enhancing DSB repair under oxidative stress.

Department of Biology, University of Rochester, Rochester, NY 14627, USA.

* To whom correspondence should be addressed. E-mail: vera.gorbunova{at}rochester.edu (V.G.); andrei.seluanov{at}rochester.edu (A.S.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Molecular Pathways: Emerging Roles of Mammalian Sirtuin SIRT7 in Cancer.
S. Paredes, L. Villanova, and K. F. Chua (2014)
Clin. Cancer Res. 20, 1741-1746
   Abstract »    Full Text »    PDF »
Autophagy Induction by SIRT6 through Attenuation of Insulin-like Growth Factor Signaling Is Involved in the Regulation of Human Bronchial Epithelial Cell Senescence.
N. Takasaka, J. Araya, H. Hara, S. Ito, K. Kobayashi, Y. Kurita, H. Wakui, Y. Yoshii, Y. Yumino, S. Fujii, et al. (2014)
J. Immunol. 192, 958-968
   Abstract »    Full Text »    PDF »
A Proteomic Perspective of Sirtuin 6 (SIRT6) Phosphorylation and Interactions and Their Dependence on Its Catalytic Activity.
Y. V. Miteva and I. M. Cristea (2014)
Mol. Cell. Proteomics 13, 168-183
   Abstract »    Full Text »    PDF »
The Ubiquitin Ligase CHIP Prevents SirT6 Degradation through Noncanonical Ubiquitination.
S. M. Ronnebaum, Y. Wu, H. McDonough, and C. Patterson (2013)
Mol. Cell. Biol. 33, 4461-4472
   Abstract »    Full Text »    PDF »
The sirtuin SIRT6 regulates stress granule formation in C. elegans and mammals.
M. Jedrusik-Bode, M. Studencka, C. Smolka, T. Baumann, H. Schmidt, J. Kampf, F. Paap, S. Martin, J. Tazi, K. M. Muller, et al. (2013)
J. Cell Sci. 126, 5166-5177
   Abstract »    Full Text »    PDF »
SIRT6 exhibits nucleosome-dependent deacetylase activity.
R. Gil, S. Barth, Y. Kanfi, and H. Y. Cohen (2013)
Nucleic Acids Res. 41, 8537-8545
   Abstract »    Full Text »    PDF »
Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6.
R. Tao, X. Xiong, R. A. DePinho, C.-X. Deng, and X. C. Dong (2013)
J. Lipid Res. 54, 2745-2753
   Abstract »    Full Text »    PDF »
SIRT2 directs the replication stress response through CDK9 deacetylation.
H. Zhang, S.-H. Park, B. G. Pantazides, O. Karpiuk, M. D. Warren, C. W. Hardy, D. M. Duong, S.-J. Park, H.-S. Kim, A. Vassilopoulos, et al. (2013)
PNAS 110, 13546-13551
   Abstract »    Full Text »    PDF »
SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer.
M. Khongkow, Y. Olmos, C. Gong, A. R. Gomes, L. J. Monteiro, E. Yague, T. B. Cavaco, P. Khongkow, E. P. S. Man, S. Laohasinnarong, et al. (2013)
Carcinogenesis 34, 1476-1486
   Abstract »    Full Text »    PDF »
The Role of SIRT6 Protein in Aging and Reprogramming of Human Induced Pluripotent Stem Cells.
A. Sharma, S. Diecke, W. Y. Zhang, F. Lan, C. He, N. M. Mordwinkin, K. F. Chua, and J. C. Wu (2013)
J. Biol. Chem. 288, 18439-18447
   Abstract »    Full Text »    PDF »
Decreased Levels of Proapoptotic Factors and Increased Key Regulators of Mitochondrial Biogenesis Constitute New Potential Beneficial Features of Long-lived Growth Hormone Receptor Gene-Disrupted Mice.
A. Gesing, M. M. Masternak, A. Lewinski, M. Karbownik-Lewinska, J. J. Kopchick, and A. Bartke (2013)
J Gerontol A Biol Sci Med Sci 68, 639-651
   Abstract »    Full Text »    PDF »
Repair of Double-Strand Breaks by End Joining.
K. K. Chiruvella, Z. Liang, and T. E. Wilson (2013)
Cold Spring Harb Perspect Biol 5, a012757
   Abstract »    Full Text »    PDF »
SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence.
A. Cardus, A. K. Uryga, G. Walters, and J. D. Erusalimsky (2013)
Cardiovasc Res 97, 571-579
   Abstract »    Full Text »    PDF »
The chromatin remodeling factor Chd1l is required in the preimplantation embryo.
A. C. Snider, D. Leong, Q. T. Wang, J. Wysocka, M. W. M. Yao, and M. P. Scott (2013)
Biology Open 2, 121-131
   Abstract »    Full Text »    PDF »
Sirtuin Catalysis and Regulation.
J. L. Feldman, K. E. Dittenhafer-Reed, and J. M. Denu (2012)
J. Biol. Chem. 287, 42419-42427
   Abstract »    Full Text »    PDF »
The NAD+-dependent Histone Deacetylase SIRT6 Promotes Cytokine Production and Migration in Pancreatic Cancer Cells by Regulating Ca2+ Responses.
I. Bauer, A. Grozio, D. Lasiglie, G. Basile, L. Sturla, M. Magnone, G. Sociali, D. Soncini, I. Caffa, A. Poggi, et al. (2012)
J. Biol. Chem. 287, 40924-40937
   Abstract »    Full Text »    PDF »
The effect of sexual harassment on lethal mutation rate in female Drosophila melanogaster.
A. A. Maklakov, S. Immler, H. Lovlie, I. Flis, and U. Friberg (2012)
Proc R Soc B 280, 20121874
   Abstract »    Full Text »    PDF »
Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence.
Z. Mao, X. Tian, M. Van Meter, Z. Ke, V. Gorbunova, and A. Seluanov (2012)
PNAS 109, 11800-11805
   Abstract »    Full Text »    PDF »
Sirtuin 1 and Sirtuin 3: Physiological Modulators of Metabolism.
R. Nogueiras, K. M. Habegger, N. Chaudhary, B. Finan, A. S. Banks, M. O. Dietrich, T. L. Horvath, D. A. Sinclair, P. T. Pfluger, and M. H. Tschop (2012)
Physiol Rev 92, 1479-1514
   Abstract »    Full Text »    PDF »
On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1.
X. Luo and W. L. Kraus (2012)
Genes & Dev. 26, 417-432
   Abstract »    Full Text »    PDF »
MicroRNAs in Metabolism and Metabolic Diseases.
V. Rottiers, S. H. Najafi-Shoushtari, F. Kristo, S. Gurumurthy, L. Zhong, Y. Li, D. E. Cohen, R. E. Gerszten, N. Bardeesy, R. Mostoslavsky, et al. (2011)
Cold Spring Harb Symp Quant Biol 76, 225-233
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882