Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 332 (6037): 1565-1568

Copyright © 2011 by the American Association for the Advancement of Science

A Synthetic Optogenetic Transcription Device Enhances Blood-Glucose Homeostasis in Mice

Haifeng Ye,1 Marie Daoud-El Baba,2 Ren-Wang Peng,1 Martin Fussenegger1,3,*

Abstract: Synthetic biology has advanced the design of genetic devices that can be used to reprogram metabolic activities in mammalian cells. By functionally linking the signal transduction of melanopsin to the control circuit of the nuclear factor of activated T cells, we have designed a synthetic signaling cascade enabling light-inducible transgene expression in different cell lines grown in culture or bioreactors or implanted into mice. In animals harboring intraperitoneal hollow-fiber or subcutaneous implants containing light-inducible transgenic cells, the serum levels of the human glycoprotein secreted alkaline phosphatase could be remote-controlled with fiber optics or transdermally regulated through direct illumination. Light-controlled expression of the glucagon-like peptide 1 was able to attenuate glycemic excursions in type II diabetic mice. Synthetic light-pulse–transcription converters may have applications in therapeutics and protein expression technology.

1 Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.
2 Département Génie Biologique, Institut Universitaire de Technologie (IUT), F-69622 Villeurbanne Cedex, France.
3 Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.

* To whom correspondence should be addressed. E-mail: fussenegger{at}

Biomedically relevant circuit-design strategies in mammalian synthetic biology.
W. Bacchus, D. Aubel, and M. Fussenegger (2014)
Mol Syst Biol 9, 691
   Abstract »    Full Text »    PDF »
Optogenetic activation of Gq signalling modulates pacemaker activity of cardiomyocytes.
T. Beiert, T. Bruegmann, and P. Sasse (2014)
Cardiovasc Res
   Abstract »    Full Text »    PDF »
Reward-based hypertension control by a synthetic brain-dopamine interface.
K. Rossger, G. Charpin-El Hamri, and M. Fussenegger (2013)
PNAS 110, 18150-18155
   Abstract »    Full Text »    PDF »
Dynamically Reshaping Signaling Networks to Program Cell Fate via Genetic Controllers.
K. E. Galloway, E. Franco, and C. D. Smolke (2013)
Science 341, 1235005
   Abstract »    Full Text »    PDF »
Multi-chromatic control of mammalian gene expression and signaling.
K. Muller, R. Engesser, S. Schulz, T. Steinberg, P. Tomakidi, C. C. Weber, R. Ulm, J. Timmer, M. D. Zurbriggen, and W. Weber (2013)
Nucleic Acids Res. 41, e124
   Abstract »    Full Text »    PDF »
Advanced BMP Gene Therapies for Temporal and Spatial Control of Bone Regeneration.
C. G. Wilson, F. M. Martin-Saavedra, N. Vilaboa, and R. T. Franceschi (2013)
Journal of Dental Research 92, 409-417
   Abstract »    Full Text »    PDF »
A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells.
K. Muller, R. Engesser, S. Metzger, S. Schulz, M. M. Kampf, M. Busacker, T. Steinberg, P. Tomakidi, M. Ehrbar, F. Nagy, et al. (2013)
Nucleic Acids Res. 41, e77
   Abstract »    Full Text »    PDF »
Optogenetics and Translational Medicine.
B. Y. Chow and E. S. Boyden (2013)
Science Translational Medicine 5, 177ps5
   Full Text »    PDF »
From Optogenetic Technologies to Neuromodulation Therapies.
J. C. Williams and T. Denison (2013)
Science Translational Medicine 5, 177ps6
   Full Text »    PDF »
Pharmaceutically controlled designer circuit for the treatment of the metabolic syndrome.
H. Ye, G. Charpin-El Hamri, K. Zwicky, M. Christen, M. Folcher, and M. Fussenegger (2013)
PNAS 110, 141-146
   Abstract »    Full Text »    PDF »
Making gene circuits sing.
A. Prindle and J. Hasty (2012)
PNAS 109, 16758-16759
   Full Text »    PDF »
Regulating synthetic gene networks in 3D materials.
T. L. Deans, A. Singh, M. Gibson, and J. H. Elisseeff (2012)
PNAS 109, 15217-15222
   Abstract »    Full Text »    PDF »
Photothermic regulation of gene expression triggered by laser-induced carbon nanohorns.
E. Miyako, T. Deguchi, Y. Nakajima, M. Yudasaka, Y. Hagihara, M. Horie, M. Shichiri, Y. Higuchi, F. Yamashita, M. Hashida, et al. (2012)
PNAS 109, 7523-7528
   Abstract »    Full Text »    PDF »
Light-sensitive coupling of rhodopsin and melanopsin to Gi/o and Gq signal transduction in Caenorhabditis elegans.
P. Cao, W. Sun, K. Kramp, M. Zheng, D. Salom, B. Jastrzebska, H. Jin, K. Palczewski, and Z. Feng (2012)
FASEB J 26, 480-491
   Abstract »    Full Text »    PDF »
Melanopsin and Mechanisms of Non-visual Ocular Photoreception.
T. Sexton, E. Buhr, and R. N. Van Gelder (2012)
J. Biol. Chem. 287, 1649-1656
   Abstract »    Full Text »    PDF »
From DNA to Targeted Therapeutics: Bringing Synthetic Biology to the Clinic.
Y. Y. Chen and C. D. Smolke (2011)
Science Translational Medicine 3, 106ps42
   Full Text »    PDF »
Synthetic Physiology.
B. Y. Chow and E. S. Boyden (2011)
Science 332, 1508-1509
   Abstract »    Full Text »    PDF »
A New Approach to an Old Problem: Synthetic Biology Tools for Human Disease and Metabolism.
D. R. Burrill, P. M. Boyle, and P. A. Silver (2011)
Cold Spring Harb Symp Quant Biol 76, 145-154
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882