Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 333 (6039): 228-233

Copyright © 2011 by the American Association for the Advancement of Science

Phosphorylation of the Autophagy Receptor Optineurin Restricts Salmonella Growth

Philipp Wild,1 Hesso Farhan,2 David G. McEwan,1 Sebastian Wagner,3 Vladimir V. Rogov,4,5 Nathan R. Brady,6 Benjamin Richter,1 Jelena Korac,7 Oliver Waidmann,1 Chunaram Choudhary,3 Volker Dötsch,4 Dirk Bumann,2 Ivan Dikic1,7,*

Abstract: Selective autophagy can be mediated via receptor molecules that link specific cargoes to the autophagosomal membranes decorated by ubiquitin-like microtubule-associated protein light chain 3 (LC3) modifiers. Although several autophagy receptors have been identified, little is known about mechanisms controlling their functions in vivo. In this work, we found that phosphorylation of an autophagy receptor, optineurin, promoted selective autophagy of ubiquitin-coated cytosolic Salmonella enterica. The protein kinase TANK binding kinase 1 (TBK1) phosphorylated optineurin on serine-177, enhancing LC3 binding affinity and autophagic clearance of cytosolic Salmonella. Conversely, ubiquitin- or LC3-binding optineurin mutants and silencing of optineurin or TBK1 impaired Salmonella autophagy, resulting in increased intracellular bacterial proliferation. We propose that phosphorylation of autophagy receptors might be a general mechanism for regulation of cargo-selective autophagy.

1 Frankfurt Institute for Molecular Life Sciences and Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany.
2 Infection Biology, Biozentrum, University Basel, Klingelbergstr. 50/70, CH-4056 Basel, Switzerland.
3 The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
4 Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Marie Curie Strasse 9, D-60439 Frankfurt (Main), Germany.
5 Institute of Protein Research, 142290, Pushchino, Russia.
6 Systems Biology of Cell Death Mechanisms, German Cancer Research Center, Bioquant, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
7 University of Split, School of Medicine, Department of Immunology and Medical Genetics, Soltanska 2, 21 000 Split, Croatia.

* To whom correspondence should be addressed. E-mail: ivan.dikic{at}

Mitophagy Enhances Oncolytic Measles Virus Replication by Mitigating DDX58/RIG-I-Like Receptor Signaling.
M. Xia, P. Gonzalez, C. Li, G. Meng, A. Jiang, H. Wang, Q. Gao, K.-M. Debatin, C. Beltinger, and J. Wei (2014)
J. Virol. 88, 5152-5164
   Abstract »    Full Text »    PDF »
Autophagy Facilitates Salmonella Replication in HeLa Cells.
H. B. Yu, M. A. Croxen, A. M. Marchiando, R. B. R. Ferreira, K. Cadwell, L. J. Foster, and B. B. Finlay (2014)
mBio 5, e00865-14
   Abstract »    Full Text »    PDF »
Structural determinants in GABARAP required for the selective binding and recruitment of ALFY to LC3B-positive structures.
A. H. Lystad, Y. Ichimura, K. Takagi, Y. Yang, S. Pankiv, Y. Kanegae, S. Kageyama, M. Suzuki, I. Saito, T. Mizushima, et al. (2014)
   Abstract »    Full Text »    PDF »
Structure of an SspH1-PKN1 Complex Reveals the Basis for Host Substrate Recognition and Mechanism of Activation for a Bacterial E3 Ubiquitin Ligase.
A. F. A. Keszei, X. Tang, C. McCormick, E. Zeqiraj, J. R. Rohde, M. Tyers, and F. Sicheri (2014)
Mol. Cell. Biol. 34, 362-373
   Abstract »    Full Text »    PDF »
The Regulation of Autophagosome Dynamics by Huntingtin and HAP1 Is Disrupted by Expression of Mutant Huntingtin, Leading to Defective Cargo Degradation.
Y. C. Wong and E. L. F. Holzbaur (2014)
J. Neurosci. 34, 1293-1305
   Abstract »    Full Text »    PDF »
Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy.
K. Yamano, A. I. Fogel, C. Wang, A. M. van der Bliek, and R. J. Youle (2014)
eLife Sci 3, e01612
   Abstract »    Full Text »    PDF »
The LC3 interactome at a glance.
P. Wild, D. G. McEwan, and I. Dikic (2014)
J. Cell Sci. 127, 3-9
   Abstract »    Full Text »    PDF »
Interaction of Bcl-2 with the Autophagy-related GABAA Receptor-associated Protein (GABARAP): BIOPHYSICAL CHARACTERIZATION AND FUNCTIONAL IMPLICATIONS.
P. Ma, M. Schwarten, L. Schneider, A. Boeske, N. Henke, D. Lisak, S. Weber, J. Mohrluder, M. Stoldt, B. Strodel, et al. (2013)
J. Biol. Chem. 288, 37204-37215
   Abstract »    Full Text »    PDF »
Optineurin Insufficiency Impairs IRF3 but Not NF-{kappa}B Activation in Immune Cells.
I. Munitic, M. L. Giardino Torchia, N. P. Meena, G. Zhu, C. C. Li, and J. D. Ashwell (2013)
J. Immunol. 191, 6231-6240
   Abstract »    Full Text »    PDF »
Two-sided Ubiquitin Binding of NF-{kappa}B Essential Modulator (NEMO) Zinc Finger Unveiled by a Mutation Associated with Anhidrotic Ectodermal Dysplasia with Immunodeficiency Syndrome.
F. Ngadjeua, J. Chiaravalli, F. Traincard, B. Raynal, E. Fontan, and F. Agou (2013)
J. Biol. Chem. 288, 33722-33737
   Abstract »    Full Text »    PDF »
Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer's APP-CTF for terminal degradation via autophagy.
Y. Tian, J. C. Chang, E. Y. Fan, M. Flajolet, and P. Greengard (2013)
PNAS 110, 17071-17076
   Abstract »    Full Text »    PDF »
Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin.
N. Fujita, E. Morita, T. Itoh, A. Tanaka, M. Nakaoka, Y. Osada, T. Umemoto, T. Saitoh, H. Nakatogawa, S. Kobayashi, et al. (2013)
J. Cell Biol. 203, 115-128
   Abstract »    Full Text »    PDF »
Enhanced optineurin E50K-TBK1 interaction evokes protein insolubility and initiates familial primary open-angle glaucoma.
Y. Minegishi, D. Iejima, H. Kobayashi, Z.-L. Chi, K. Kawase, T. Yamamoto, T. Seki, S. Yuasa, K. Fukuda, and T. Iwata (2013)
Hum. Mol. Genet. 22, 3559-3567
   Abstract »    Full Text »    PDF »
The LIR motif - crucial for selective autophagy.
A. B. Birgisdottir, T. Lamark, and T. Johansen (2013)
J. Cell Sci. 126, 3237-3247
   Abstract »    Full Text »    PDF »
Mechanism of Endogenous Regulation of the Type I Interferon Response by Suppressor of I{kappa}B Kinase {epsilon} (SIKE), a Novel Substrate of TANK-binding Kinase 1 (TBK1).
J. D. Marion, C. F. Roberts, R. J. Call, J. L. Forbes, K. T. Nelson, J. E. Bell, and J. K. Bell (2013)
J. Biol. Chem. 288, 18612-18623
   Abstract »    Full Text »    PDF »
Myosin VI and its cargo adaptors - linking endocytosis and autophagy.
D. A. Tumbarello, J. Kendrick-Jones, and F. Buss (2013)
J. Cell Sci. 126, 2561-2570
   Abstract »    Full Text »    PDF »
Cellular Self-Defense: How Cell-Autonomous Immunity Protects Against Pathogens.
F. Randow, J. D. MacMicking, and L. C. James (2013)
Science 340, 701-706
   Abstract »    Full Text »    PDF »
Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11.
J.-C. Farre, A. Burkenroad, S. F. Burnett, and S. Subramani (2013)
EMBO Rep. 14, 441-449
   Abstract »    Full Text »    PDF »
RNA dysfunction and aggrephagy at the centre of an amyotrophic lateral sclerosis/frontotemporal dementia disease continuum.
M. Thomas, J. Alegre-Abarrategui, and R. Wade-Martins (2013)
Brain 136, 1345-1360
   Abstract »    Full Text »    PDF »
TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3.
E. Boada-Romero, M. Letek, A. Fleischer, K. Pallauf, C. Ramon-Barros, and F. X. Pimentel-Muinos (2013)
EMBO J. 32, 566-582
   Abstract »    Full Text »    PDF »
NBR1 acts as an autophagy receptor for peroxisomes.
E. Deosaran, K. B. Larsen, R. Hua, G. Sargent, Y. Wang, S. Kim, T. Lamark, M. Jauregui, K. Law, J. Lippincott-Schwartz, et al. (2013)
J. Cell Sci. 126, 939-952
   Abstract »    Full Text »    PDF »
Sterical Hindrance Promotes Selectivity of the Autophagy Cargo Receptor NDP52 for the Danger Receptor Galectin-8 in Antibacterial Autophagy.
S. Li, M. P. Wandel, F. Li, Z. Liu, C. He, J. Wu, Y. Shi, and F. Randow (2013)
Science Signaling 6, ra9
   Abstract »    Full Text »    PDF »
Non-autophagic roles of autophagy-related proteins.
S. Subramani and V. Malhotra (2013)
EMBO Rep. 14, 143-151
   Abstract »    Full Text »    PDF »
Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates.
J. Korac, V. Schaeffer, I. Kovacevic, A. M. Clement, B. Jungblut, C. Behl, J. Terzic, and I. Dikic (2013)
J. Cell Sci. 126, 580-592
   Abstract »    Full Text »    PDF »
Modulation of Serines 17 and 24 in the LC3-interacting Region of Bnip3 Determines Pro-survival Mitophagy versus Apoptosis.
Y. Zhu, S. Massen, M. Terenzio, V. Lang, S. Chen-Lindner, R. Eils, I. Novak, I. Dikic, A. Hamacher-Brady, and N. R. Brady (2013)
J. Biol. Chem. 288, 1099-1113
   Abstract »    Full Text »    PDF »
Autophagy and selective deployment of Atg proteins in antiviral defense.
B. Yordy, M. C. Tal, K. Hayashi, O. Arojo, and A. Iwasaki (2013)
Int. Immunol. 25, 1-10
   Abstract »    Full Text »    PDF »
ATG8 Family Proteins Act as Scaffolds for Assembly of the ULK Complex: SEQUENCE REQUIREMENTS FOR LC3-INTERACTING REGION (LIR) MOTIFS.
E. A. Alemu, T. Lamark, K. M. Torgersen, A. B. Birgisdottir, K. B. Larsen, A. Jain, H. Olsvik, A. Overvatn, V. Kirkin, and T. Johansen (2012)
J. Biol. Chem. 287, 39275-39290
   Abstract »    Full Text »    PDF »
Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation.
E. F. Castillo, A. Dekonenko, J. Arko-Mensah, M. A. Mandell, N. Dupont, S. Jiang, M. Delgado-Vargas, G. S. Timmins, D. Bhattacharya, H. Yang, et al. (2012)
PNAS 109, E3168-E3176
   Abstract »    Full Text »    PDF »
Optineurin mediates a negative regulation of Rab8 by the GTPase-activating protein TBC1D17.
V. Vaibhava, A. Nagabhushana, M. L. S. Chalasani, C. Sudhakar, A. Kumari, and G. Swarup (2012)
J. Cell Sci. 125, 5026-5039
   Abstract »    Full Text »    PDF »
Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy.
C. Kraft, M. Kijanska, E. Kalie, E. Siergiejuk, S. S. Lee, G. Semplicio, I. Stoffel, A. Brezovich, M. Verma, I. Hansmann, et al. (2012)
EMBO J. 31, 3691-3703
   Abstract »    Full Text »    PDF »
Ubiquitylation in immune disorders and cancer: from molecular mechanisms to therapeutic implications.
S. Fulda, K. Rajalingam, and I. Dikic (2012)
EMBO Mol Med. 4, 545-556
   Abstract »    Full Text »    PDF »
Autophagy: An Emerging Immunological Paradigm.
V. Deretic (2012)
J. Immunol. 189, 15-20
   Abstract »    Full Text »    PDF »
Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae.
A. M. Motley, J. M. Nuttall, and E. H. Hettema (2012)
EMBO J. 31, 2852-2868
   Abstract »    Full Text »    PDF »
Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation.
X. Ma, E. Helgason, Q. T. Phung, C. L. Quan, R. S. Iyer, M. W. Lee, K. K. Bowman, M. A. Starovasnik, and E. C. Dueber (2012)
PNAS 109, 9378-9383
   Abstract »    Full Text »    PDF »
Ubiquitin-like proteins and autophagy at a glance.
T. Shpilka, N. Mizushima, and Z. Elazar (2012)
J. Cell Sci. 125, 2343-2348
   Full Text »    PDF »
Rab GTPase-Activating Proteins in Autophagy: Regulation of Endocytic and Autophagy Pathways by Direct Binding to Human ATG8 Modifiers.
D. Popovic, M. Akutsu, I. Novak, J. W. Harper, C. Behrends, and I. Dikic (2012)
Mol. Cell. Biol. 32, 1733-1744
   Abstract »    Full Text »    PDF »
Propeptide of Aminopeptidase 1 Protein Mediates Aggregation and Vesicle Formation in Cytoplasm-to-Vacuole Targeting Pathway.
M. Morales Quinones, J. T. Winston, and P. E. Stromhaug (2012)
J. Biol. Chem. 287, 10121-10133
   Abstract »    Full Text »    PDF »
Signalling through the grapevine.
I. Dikic and R. J. Daly (2012)
EMBO Rep. 13, 178-180
   Abstract »    Full Text »    PDF »
Polyubiquitin Binding to Optineurin Is Required for Optimal Activation of TANK-binding Kinase 1 and Production of Interferon {beta}.
C. E. Gleason, A. Ordureau, R. Gourlay, J. S. C. Arthur, and P. Cohen (2011)
J. Biol. Chem. 286, 35663-35674
   Abstract »    Full Text »    PDF »
In the family with ubiquitin.
G. Alexandru, N. Pariente, and D. Xirodimas (2011)
EMBO Rep. 12, 880-882
   Full Text »    PDF »
TBK1 Mediates Crosstalk Between the Innate Immune Response and Autophagy.
H. Weidberg and Z. Elazar (2011)
Science Signaling 4, pe39
   Abstract »    Full Text »    PDF »
Autophagy and innate immunity ally against bacterial invasion.
L. Galluzzi, O. Kepp, and G. Kroemer (2011)
EMBO J. 30, 3213-3214
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882