Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 333 (6041): 453-456

Copyright © 2011 by the American Association for the Advancement of Science

De-AMPylation of the Small GTPase Rab1 by the Pathogen Legionella pneumophila

M. Ramona Neunuebel,1,* Yang Chen,1,3,* Andrew H. Gaspar,1 Peter S. Backlund, Jr.,2 Alfred Yergey,2 Matthias P. Machner1,{dagger}

Abstract: The bacterial pathogen Legionella pneumophila exploits host cell vesicle transport by transiently manipulating the activity of the small guanosine triphosphatase (GTPase) Rab1. The effector protein SidM recruits Rab1 to the Legionella-containing vacuole (LCV), where it activates Rab1 and then AMPylates it by covalently adding adenosine monophosphate (AMP). L. pneumophila GTPase-activating protein LepB inactivates Rab1 before its removal from LCVs. Because LepB cannot bind AMPylated Rab1, the molecular events leading to Rab1 inactivation are unknown. We found that the effector protein SidD from L. pneumophila catalyzed AMP release from Rab1, generating de-AMPylated Rab1 accessible for inactivation by LepB. L. pneumophila mutants lacking SidD were defective for Rab1 removal from LCVs, identifying SidD as the missing link connecting the processes of early Rab1 accumulation and subsequent Rab1 removal during infection.

1 Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
2 Biomedical Mass Spectrometry Facility, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
3 Health Science Center, Peking University, Beijing 100191, China.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: machnerm{at}

AMPylation Is Critical for Rab1 Localization to Vacuoles Containing Legionella pneumophila.
C. A. Hardiman and C. R. Roy (2014)
mBio 5, e01035-13
   Abstract »    Full Text »    PDF »
Identification of Legionella pneumophila Effectors Regulated by the LetAS-RsmYZ-CsrA Regulatory Cascade, Many of Which Modulate Vesicular Trafficking.
O. Nevo, T. Zusman, M. Rasis, Z. Lifshitz, and G. Segal (2014)
J. Bacteriol. 196, 681-692
   Abstract »    Full Text »    PDF »
Induction of Rapid Cell Death by an Environmental Isolate of Legionella pneumophila in Mouse Macrophages.
L. Tao, W. Zhu, B.-J. Hu, J.-M. Qu, and Z.-Q. Luo (2013)
Infect. Immun. 81, 3077-3088
   Abstract »    Full Text »    PDF »
Rab GTPases and membrane identity: Causal or inconsequential?.
F. A. Barr (2013)
J. Cell Biol. 202, 191-199
   Abstract »    Full Text »    PDF »
Functional genomics of intracellular bacteria.
M. de Barsy and G. Greub (2013)
Briefings in Functional Genomics 12, 341-353
   Abstract »    Full Text »    PDF »
Targeting of the Small GTPase Rab6A' by the Legionella pneumophila Effector LidA.
Y. Chen and M. P. Machner (2013)
Infect. Immun. 81, 2226-2235
   Abstract »    Full Text »    PDF »
Mechanism of Rab1b deactivation by the Legionella pneumophila GAP LepB.
E. Mihai Gazdag, A. Streller, I. Haneburger, H. Hilbi, I. R. Vetter, R. S. Goody, and A. Itzen (2013)
EMBO Rep. 14, 199-205
   Abstract »    Full Text »    PDF »
Characterization of Enzymes from Legionella pneumophila Involved in Reversible Adenylylation of Rab1 Protein.
M. P. Muller, A. V. Shkumatov, L. K. Oesterlin, S. Schoebel, P. R. Goody, R. S. Goody, and A. Itzen (2012)
J. Biol. Chem. 287, 35036-35046
   Abstract »    Full Text »    PDF »
Subversion of Cell Signaling by Pathogens.
N. M. Alto and K. Orth (2012)
Cold Spring Harb Perspect Biol 4, a006114
   Abstract »    Full Text »    PDF »
Implication of Proteins Containing Tetratricopeptide Repeats in Conditional Virulence Phenotypes of Legionella pneumophila.
P. Bandyopadhyay, E. U. Sumer, D. Jayakumar, S. Liu, H. Xiao, and H. M. Steinman (2012)
J. Bacteriol. 194, 3579-3588
   Abstract »    Full Text »    PDF »
Posttranslational modifications of Rab GTPases help their insertion into membranes.
O. Pylypenko and B. Goud (2012)
PNAS 109, 5555-5556
   Full Text »    PDF »
Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins.
P. R. Goody, K. Heller, L. K. Oesterlin, M. P. Muller, A. Itzen, and R. S. Goody (2012)
EMBO J. 31, 1774-1784
   Abstract »    Full Text »    PDF »
Legionella pneumophila LidA Affects Nucleotide Binding and Activity of the Host GTPase Rab1.
M. R. Neunuebel, S. Mohammadi, M. Jarnik, and M. P. Machner (2012)
J. Bacteriol. 194, 1389-1400
   Abstract »    Full Text »    PDF »
Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination.
Y. Tan, R. J. Arnold, and Z.-Q. Luo (2011)
PNAS 108, 21212-21217
   Abstract »    Full Text »    PDF »
Host-pathogen interactions: Subversion of membrane transport pathways by vacuolar pathogens.
E. Alix, S. Mukherjee, and C. R. Roy (2011)
J. Cell Biol. 195, 943-952
   Abstract »    Full Text »    PDF »
Protein LidA from Legionella is a Rab GTPase supereffector.
S. Schoebel, A. L. Cichy, R. S. Goody, and A. Itzen (2011)
PNAS 108, 17945-17950
   Abstract »    Full Text »    PDF »
De-AMPylation Unmasked: Modulation of Host Membrane Trafficking.
H. Ham and K. Orth (2011)
Science Signaling 4, pe42
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882