Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 333 (6042): 596-601

Copyright © 2011 by the American Association for the Advancement of Science

Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network

M. Shahid Mukhtar,1,*,{dagger} Anne-Ruxandra Carvunis,2,3,4,* Matija Dreze,2,3,5,* Petra Epple,1,* Jens Steinbrenner,6 Jonathan Moore,7 Murat Tasan,8 Mary Galli,9 Tong Hao,2,3 Marc T. Nishimura,1 Samuel J. Pevzner,2,3,10,11 Susan E. Donovan,6,{ddagger} Lila Ghamsari,2,3 Balaji Santhanam,2,3 Viviana Romero,2,3 Matthew M. Poulin,2,3 Fana Gebreab,2,3 Bryan J. Gutierrez,2,3 Stanley Tam,2,3 Dario Monachello,12 Mike Boxem,13 Christopher J. Harbort,1,§ Nathan McDonald,1 Lantian Gai,9 Huaming Chen,9 Yijian He,1 European Union Effectoromics Consortium, Jean Vandenhaute,5 Frederick P. Roth,2,14,|| David E. Hill,2,3 Joseph R. Ecker,9,15 Marc Vidal,2,3 Jim Beynon,6,7 Pascal Braun,2,3 Jeffery L. Dangl1,16,17,18

Abstract: Plants generate effective responses to infection by recognizing both conserved and variable pathogen-encoded molecules. Pathogens deploy virulence effector proteins into host cells, where they interact physically with host proteins to modulate defense. We generated an interaction network of plant-pathogen effectors from two pathogens spanning the eukaryote-eubacteria divergence, three classes of Arabidopsis immune system proteins, and ~8000 other Arabidopsis proteins. We noted convergence of effectors onto highly interconnected host proteins and indirect, rather than direct, connections between effectors and plant immune receptors. We demonstrated plant immune system functions for 15 of 17 tested host proteins that interact with effectors from both pathogens. Thus, pathogens from different kingdoms deploy independently evolved virulence proteins that interact with a limited set of highly connected cellular hubs to facilitate their diverse life-cycle strategies.

1 Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
2 Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
3 Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
4 Computational and Mathematical Biology Group, TIMC-IMAG, CNRS UMR5525 and Université de Grenoble, Faculté de Médecine, 38706 La Tronche cedex, France.
5 Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame de la Paix, 5000 Namur, Wallonia-Brussels Federation, Belgium.
6 School of Life Sciences, University of Warwick, Wellesbourne, Warwick, CV35 9EF, UK.
7 Warwick Systems Biology Centre, Coventry House, University of Warwick, Coventry, CV4 7AL, UK.
8 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
9 Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
10 Biomedical Engineering Department, Boston University, Boston, MA 02215, USA.
11 Boston University School of Medicine, Boston, MA 02118, USA.
12 Unité Mixte de Recherche en Génomique Végétale (URGV), UMR, Institut National de la Recherche Agronomique (INRA), Université d’Evry–Val d'Essonne—European Research Laboratory (UEVE–ERL), CNRS, 91057 Evry Cedex, France.
13 Utrecht University, 3584 CH Utrecht, Netherlands.
14 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
15 Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
16 Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
17 Carolina Center for Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
18 Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

* These authors contributed equally to this project.

{dagger} Present address: Department of Biology, CH106, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.

{ddagger} Present address: ADAS Boxworth Research Centre, Boxworth, Cambridgeshire CB23 4NN, UK.

§ Present address: Max Planck Institute for Infection Biology, Chariteplatz 1, 10117 Berlin, Germany.

||Present address: Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S3E1, Canada, and Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G1X5, Canada.

To whom correspondence should be addressed. E-mails: dangl{at}email.unc.edu (J.L.D.); pascal_braun{at}dfci.harvard.edu (P.B.); jim.beynon{at}warwick.ac.uk (J.B.); marc_vidal{at}dfci.harvard.edu (M.V.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis.
K. Klopffleisch, N. Phan, K. Augustin, R. S. Bayne, K. S. Booker, J. R. Botella, N. C. Carpita, T. Carr, J.-G. Chen, T. R. Cooke, et al. (2014)
Mol Syst Biol 7, 532
   Abstract »    Full Text »    PDF »
Differential network biology.
T. Ideker and N. J. Krogan (2014)
Mol Syst Biol 8, 565
   Abstract »    Full Text »    PDF »
Natural Variation of Heterokaryon Incompatibility Gene het-c in Podospora anserina Reveals Diversifying Selection.
E. Bastiaans, A. J. M. Debets, D. K. Aanen, A. D. van Diepeningen, S. J. Saupe, and M. Paoletti (2014)
Mol. Biol. Evol. 31, 962-974
   Abstract »    Full Text »    PDF »
iNID: An Analytical Framework for Identifying Network Models for Interplays among Developmental Signaling in Arabidopsis.
D. Choi, J. Choi, B. Kang, S. Lee, Y.-h. Cho, I. Hwang, and D. Hwang (2014)
Mol Plant
   Abstract »    Full Text »    PDF »
Tobacco LSU-like protein couples sulphur-deficiency response with ethylene signalling pathway.
G. Moniuszko, M. Skoneczny, K. Zientara-Rytter, A. Wawrzynska, D. Glow, S. M. Cristescu, F. J. M. Harren, and A. Sirko (2013)
J. Exp. Bot. 64, 5173-5182
   Abstract »    Full Text »    PDF »
Biostatistical approaches for the reconstruction of gene co-expression networks based on transcriptomic data.
L. Lopez-Kleine, L. Leal, and C. Lopez (2013)
Briefings in Functional Genomics 12, 457-467
   Abstract »    Full Text »    PDF »
Pivoting the Plant Immune System from Dissection to Deployment.
J. L. Dangl, D. M. Horvath, and B. J. Staskawicz (2013)
Science 341, 746-751
   Abstract »    Full Text »    PDF »
Multitask learning for host-pathogen protein interactions.
M. Kshirsagar, J. Carbonell, and J. Klein-Seetharaman (2013)
Bioinformatics 29, i217-i226
   Abstract »    Full Text »    PDF »
Linking the signaling cascades and dynamic regulatory networks controlling stress responses.
A. Gitter, M. Carmi, N. Barkai, and Z. Bar-Joseph (2013)
Genome Res. 23, 365-376
   Abstract »    Full Text »    PDF »
Conservation of NLR-triggered immunity across plant lineages.
T. Maekawa, B. Kracher, S. Vernaldi, E. Ver Loren van Themaat, and P. Schulze-Lefert (2012)
PNAS 109, 20119-20123
   Abstract »    Full Text »    PDF »
Systems Analysis of Plant Functional, Transcriptional, Physical Interaction, and Metabolic Networks.
G. W. Bassel, A. Gaudinier, S. M. Brady, L. Hennig, S. Y. Rhee, and I. De Smet (2012)
PLANT CELL 24, 3859-3875
   Abstract »    Full Text »    PDF »
Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode.
J. L. Lozano-Torres, R. H. P. Wilbers, P. Gawronski, J. C. Boshoven, A. Finkers-Tomczak, J. H. G. Cordewener, A. H. P. America, H. A. Overmars, J. W. Van 't Klooster, L. Baranowski, et al. (2012)
PNAS 109, 10119-10124
   Abstract »    Full Text »    PDF »
Utilizing RNA-Seq data for de novo coexpression network inference.
O. D. Iancu, S. Kawane, D. Bottomly, R. Searles, R. Hitzemann, and S. McWeeney (2012)
Bioinformatics 28, 1592-1597
   Abstract »    Full Text »    PDF »
Integrated Systems View on Networking by Hormones in Arabidopsis Immunity Reveals Multiple Crosstalk for Cytokinin.
M. Naseem, N. Philippi, A. Hussain, G. Wangorsch, N. Ahmed, and T. Dandekar (2012)
PLANT CELL 24, 1793-1814
   Abstract »    Full Text »    PDF »
A Comprehensive Dataset of Genes with a Loss-of-Function Mutant Phenotype in Arabidopsis.
J. Lloyd and D. Meinke (2012)
Plant Physiology 158, 1115-1129
   Abstract »    Full Text »    PDF »
Mechanisms of Nuclear Suppression of Host Immunity by Effectors from the Arabidopsis Downy Mildew Pathogen Hyaloperonospora arabidopsidis (Hpa).
M.- C. Caillaud, L. Wirthmueller, G. Fabro, S. J. M. Piquerez, S. Asai, N. Ishaque, and J. D. G. Jones (2012)
Cold Spring Harb Symp Quant Biol 77, 285-293
   Abstract »    Full Text »    PDF »
Effector Biology of Plant-Associated Organisms: Concepts and Perspectives.
J. Win, A. Chaparro-Garcia, K. Belhaj, D. G. O. Saunders, K. Yoshida, S. Dong, S. Schornack, C. Zipfel, S. Robatzek, S. A. Hogenhout, et al. (2012)
Cold Spring Harb Symp Quant Biol 77, 235-247
   Abstract »    Full Text »    PDF »
Advances in Omics and Bioinformatics Tools for Systems Analyses of Plant Functions.
K. Mochida and K. Shinozaki (2011)
Plant Cell Physiol. 52, 2017-2038
   Abstract »    Full Text »    PDF »
A Cellular Roadmap for the Plant Kingdom.
C. R. Landry (2011)
Science 333, 532-533
   Abstract »    Full Text »    PDF »
Evidence for Network Evolution in an Arabidopsis Interactome Map.
Arabidopsis Interactome Mapping Consortium (2011)
Science 333, 601-607
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882