Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 333 (6047): 1307-1311

Copyright © 2011 by the American Association for the Advancement of Science

Multi-Input RNAi-Based Logic Circuit for Identification of Specific Cancer Cells

Zhen Xie,1,2,* Liliana Wroblewska,2 Laura Prochazka,3 Ron Weiss,2,4,{dagger} Yaakov Benenson1,3,{dagger},{ddagger}

Abstract: Engineered biological systems that integrate multi-input sensing, sophisticated information processing, and precisely regulated actuation in living cells could be useful in a variety of applications. For example, anticancer therapies could be engineered to detect and respond to complex cellular conditions in individual cells with high specificity. Here, we show a scalable transcriptional/posttranscriptional synthetic regulatory circuit—a cell-type "classifier"—that senses expression levels of a customizable set of endogenous microRNAs and triggers a cellular response only if the expression levels match a predetermined profile of interest. We demonstrate that a HeLa cancer cell classifier selectively identifies HeLa cells and triggers apoptosis without affecting non-HeLa cell types. This approach also provides a general platform for programmed responses to other complex cell states.

1 Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
2 Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 40 Ames Street, Cambridge, MA 02142, USA.
3 Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, Basel 4058, Switzerland.
4 Department of Electrical Engineering and Computer Science, MIT, 40 Ames Street, Cambridge MA 02142, USA.

* Present address: Department of Biological Engineering, MIT, 40 Ames Street, Cambridge, MA 02142, USA.

{ddagger} Present address: Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel 4058, Switzerland.

{dagger} To whom correspondence should be addressed. E-mail: kobi.benenson{at}bsse.ethz.ch (Y.B.); rweiss{at}mit.edu (R.W.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Biomedically relevant circuit-design strategies in mammalian synthetic biology.
W. Bacchus, D. Aubel, and M. Fussenegger (2014)
Mol Syst Biol 9, 691
   Abstract »    Full Text »    PDF »
Autonomous bacterial localization and gene expression based on nearby cell receptor density.
H.-C. Wu, C.-Y. Tsao, D. N. Quan, Y. Cheng, M. D. Servinsky, K. K. Carter, K. J. Jee, J. L. Terrell, A. Zargar, G. W. Rubloff, et al. (2014)
Mol Syst Biol 9, 636
   Abstract »    Full Text »    PDF »
Two- and three-input TALE-based AND logic computation in embryonic stem cells.
F. Lienert, J. P. Torella, J.-H. Chen, M. Norsworthy, R. R. Richardson, and P. A. Silver (2013)
Nucleic Acids Res. 41, 9967-9975
   Abstract »    Full Text »    PDF »
Dynamically Reshaping Signaling Networks to Program Cell Fate via Genetic Controllers.
K. E. Galloway, E. Franco, and C. D. Smolke (2013)
Science 341, 1235005
   Abstract »    Full Text »    PDF »
RNA nanotechnology for computer design and in vivo computation.
M. Qiu, E. Khisamutdinov, Z. Zhao, C. Pan, J.-W. Choi, N. B. Leontis, and P. Guo (2013)
Phil Trans R Soc A 371, 20120310
   Abstract »    Full Text »    PDF »
Rapid, modular and reliable construction of complex mammalian gene circuits.
P. Guye, Y. Li, L. Wroblewska, X. Duportet, and R. Weiss (2013)
Nucleic Acids Res. 41, e156
   Abstract »    Full Text »    PDF »
A modular strategy for engineering orthogonal chimeric RNA transcription regulators.
M. K. Takahashi and J. B. Lucks (2013)
Nucleic Acids Res. 41, 7577-7588
   Abstract »    Full Text »    PDF »
Quantitative and simultaneous translational control of distinct mammalian mRNAs.
K. Endo, J. A. Stapleton, K. Hayashi, H. Saito, and T. Inoue (2013)
Nucleic Acids Res. 41, e135
   Abstract »    Full Text »    PDF »
Recombinatorial Logic.
Y. Benenson (2013)
Science 340, 554-555
   Abstract »    Full Text »    PDF »
Amplifying Genetic Logic Gates.
J. Bonnet, P. Yin, M. E. Ortiz, P. Subsoontorn, and D. Endy (2013)
Science 340, 599-603
   Abstract »    Full Text »    PDF »
An engineered small RNA-mediated genetic switch based on a ribozyme expression platform.
B. Klauser and J. S. Hartig (2013)
Nucleic Acids Res. 41, 5542-5552
   Abstract »    Full Text »    PDF »
Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants.
D. L. Shis and M. R. Bennett (2013)
PNAS 110, 5028-5033
   Abstract »    Full Text »    PDF »
Pharmaceutically controlled designer circuit for the treatment of the metabolic syndrome.
H. Ye, G. Charpin-El Hamri, K. Zwicky, M. Christen, M. Folcher, and M. Fussenegger (2013)
PNAS 110, 141-146
   Abstract »    Full Text »    PDF »
Understanding cancer mechanisms through network dynamics.
T. M. K. Cheng, S. Gulati, R. Agius, and P. A. Bates (2012)
Briefings in Functional Genomics 11, 543-560
   Abstract »    Full Text »    PDF »
Three-dimensionally designed protein-responsive RNA devices for cell signaling regulation.
S. Kashida, T. Inoue, and H. Saito (2012)
Nucleic Acids Res. 40, 9369-9378
   Abstract »    Full Text »    PDF »
Modular control of multiple pathways using engineered orthogonal T7 polymerases.
K. Temme, R. Hill, T. H. Segall-Shapiro, F. Moser, and C. A. Voigt (2012)
Nucleic Acids Res. 40, 8773-8781
   Abstract »    Full Text »    PDF »
A mechanical Turing machine: blueprint for a biomolecular computer.
E. Shapiro (2012)
Interface Focus 2, 497-503
   Abstract »    Full Text »    PDF »
Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals.
L. Qi, J. B. Lucks, C. C. Liu, V. K. Mutalik, and A. P. Arkin (2012)
Nucleic Acids Res. 40, 5775-5786
   Abstract »    Full Text »    PDF »
A tunable zinc finger-based framework for Boolean logic computation in mammalian cells.
J. J. Lohmueller, T. Z. Armel, and P. A. Silver (2012)
Nucleic Acids Res. 40, 5180-5187
   Abstract »    Full Text »    PDF »
From DNA to Targeted Therapeutics: Bringing Synthetic Biology to the Clinic.
Y. Y. Chen and C. D. Smolke (2011)
Science Translational Medicine 3, 106ps42
   Full Text »    PDF »
A New Approach to an Old Problem: Synthetic Biology Tools for Human Disease and Metabolism.
D. R. Burrill, P. M. Boyle, and P. A. Silver (2011)
Cold Spring Harb Symp Quant Biol 76, 145-154
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882