Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 334 (6053): 255-258

Copyright © 2011 by the American Association for the Advancement of Science

The Antibacterial Lectin RegIII{gamma} Promotes the Spatial Segregation of Microbiota and Host in the Intestine

Shipra Vaishnava,1 Miwako Yamamoto,1 Kari M. Severson,1 Kelly A. Ruhn,1 Xiaofei Yu,1 Omry Koren,3 Ruth Ley,3 Edward K. Wakeland,1 Lora V. Hooper1,2,*

Abstract: The mammalian intestine is home to ~100 trillion bacteria that perform important metabolic functions for their hosts. The proximity of vast numbers of bacteria to host intestinal tissues raises the question of how symbiotic host-bacterial relationships are maintained without eliciting potentially harmful immune responses. Here, we show that RegIII{gamma}, a secreted antibacterial lectin, is essential for maintaining a ~50-micrometer zone that physically separates the microbiota from the small intestinal epithelial surface. Loss of host-bacterial segregation in RegIII{gamma}–/– mice was coupled to increased bacterial colonization of the intestinal epithelial surface and enhanced activation of intestinal adaptive immune responses by the microbiota. Together, our findings reveal that RegIII{gamma} is a fundamental immune mechanism that promotes host-bacterial mutualism by regulating the spatial relationships between microbiota and host.

1 Department of Immunology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
2 The Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
3 Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.

* To whom correspondence should be addressed. E-mail:lora.hooper{at}

{gamma}{delta} T-cell-deficient mice show alterations in mucin expression, glycosylation, and goblet cells but maintain an intact mucus layer.
O. I. Kober, D. Ahl, C. Pin, L. Holm, S. R. Carding, and N. Juge (2014)
Am J Physiol Gastrointest Liver Physiol 306, G582-G593
   Abstract »    Full Text »    PDF »
Type I interferon signalling in the intestinal epithelium affects Paneth cells, microbial ecology and epithelial regeneration.
M. Tschurtschenthaler, J. Wang, C. Fricke, T. M. J. Fritz, L. Niederreiter, T. E. Adolph, E. Sarcevic, S. Kunzel, F. A. Offner, U. Kalinke, et al. (2014)
   Abstract »    Full Text »
Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis.
J. Dalli, L. V. Norling, T. Montero-Melendez, D. F. Canova, H. Lashin, A. M. Pavlov, G. B. Sukhorukov, C. J. Hinds, and M. Perretti (2014)
EMBO Mol Med. 6, 27-42
   Abstract »    Full Text »    PDF »
Differential Induction of Antimicrobial REGIII by the Intestinal Microbiota and Bifidobacterium breve NCC2950.
J. M. M. Natividad, C. L. Hayes, J.-P. Motta, J. Jury, H. J. Galipeau, V. Philip, C. L. Garcia-Rodenas, H. Kiyama, P. Bercik, and E. F. Verdu (2013)
Appl. Envir. Microbiol. 79, 7745-7754
   Abstract »    Full Text »    PDF »
Gnotobiotic mouse model of phage-bacterial host dynamics in the human gut.
A. Reyes, M. Wu, N. P. McNulty, F. L. Rohwer, and J. I. Gordon (2013)
PNAS 110, 20236-20241
   Abstract »    Full Text »    PDF »
The Gut Microbiome Modulates Colon Tumorigenesis.
J. P. Zackular, N. T. Baxter, K. D. Iverson, W. D. Sadler, J. F. Petrosino, G. Y. Chen, and P. D. Schloss (2013)
mBio 4, e00692-13
   Abstract »    Full Text »    PDF »
Recent advances in inflammatory bowel disease: mucosal immune cells in intestinal inflammation.
M. Z. Cader and A. Kaser (2013)
Gut 62, 1653-1664
   Abstract »    Full Text »    PDF »
Mucus Enhances Gut Homeostasis and Oral Tolerance by Delivering Immunoregulatory Signals.
M. Shan, M. Gentile, J. R. Yeiser, A. C. Walland, V. U. Bornstein, K. Chen, B. He, L. Cassis, A. Bigas, M. Cols, et al. (2013)
Science 342, 447-453
   Abstract »    Full Text »    PDF »
Altered Innate Defenses in the Neonatal Gastrointestinal Tract in Response to Colonization by Neuropathogenic Escherichia coli.
G. M. H. Birchenough, M. E. V. Johansson, R. A. Stabler, F. Dalgakiran, G. C. Hansson, B. W. Wren, J. P. Luzio, and P. W. Taylor (2013)
Infect. Immun. 81, 3264-3275
   Abstract »    Full Text »    PDF »
Mucin-type O-glycans and their roles in intestinal homeostasis.
K. S. B. Bergstrom and L. Xia (2013)
Glycobiology 23, 1026-1037
   Abstract »    Full Text »    PDF »
Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer's patches.
A. Ermund, A. Schutte, M. E. V. Johansson, J. K. Gustafsson, and G. C. Hansson (2013)
Am J Physiol Gastrointest Liver Physiol 305, G341-G347
   Abstract »    Full Text »    PDF »
The gut microbiota and host innate immunity: Regulators of host metabolism and metabolic diseases in poultry?.
M. H. Kogut (2013)
J Appl Poult Res 22, 637-646
   Abstract »    Full Text »    PDF »
Low Paneth cell numbers at onset of gastrointestinal graft-versus-host disease identify patients at high risk for nonrelapse mortality.
J. E. Levine, E. Huber, S. T. G. Hammer, A. C. Harris, J. K. Greenson, T. M. Braun, J. L. M. Ferrara, and E. Holler (2013)
Blood 122, 1505-1509
   Abstract »    Full Text »    PDF »
Linking the microbiota and metabolic disease with lymphotoxin.
V. Upadhyay and Y.-X. Fu (2013)
Int. Immunol. 25, 397-403
   Abstract »    Full Text »    PDF »
Sticky bacteriophage protect animal cells.
J. R. Meyer (2013)
PNAS 110, 10475-10476
   Full Text »    PDF »
Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity.
A. Everard, C. Belzer, L. Geurts, J. P. Ouwerkerk, C. Druart, L. B. Bindels, Y. Guiot, M. Derrien, G. G. Muccioli, N. M. Delzenne, et al. (2013)
PNAS 110, 9066-9071
   Abstract »    Full Text »    PDF »
IL-22 Deficiency Alters Colonic Microbiota To Be Transmissible and Colitogenic.
L. A. Zenewicz, X. Yin, G. Wang, E. Elinav, L. Hao, L. Zhao, and R. A. Flavell (2013)
J. Immunol. 190, 5306-5312
   Abstract »    Full Text »    PDF »
Cellular Self-Defense: How Cell-Autonomous Immunity Protects Against Pathogens.
F. Randow, J. D. MacMicking, and L. C. James (2013)
Science 340, 701-706
   Abstract »    Full Text »    PDF »
N-terminal Cleaved Pancreatitis-associated Protein-III (PAP-III) Serves as a Scaffold for Neurites and Promotes Neurite Outgrowth.
H. Konishi, S. Matsumoto, K. Namikawa, and H. Kiyama (2013)
J. Biol. Chem. 288, 10205-10213
   Abstract »    Full Text »    PDF »
Participation of MyD88 and Interleukin-33 as Innate Drivers of Th2 Immunity to Trichinella spiralis.
L. K. Scalfone, H. J. Nel, L. F. Gagliardo, J. L. Cameron, S. Al-Shokri, C. A. Leifer, P. G. Fallon, and J. A. Appleton (2013)
Infect. Immun. 81, 1354-1363
   Abstract »    Full Text »    PDF »
Exploring host-microbiota interactions in animal models and humans.
A. D. Kostic, M. R. Howitt, and W. S. Garrett (2013)
Genes & Dev. 27, 701-718
   Abstract »    Full Text »    PDF »
Dietary Xylooligosaccharide Downregulates IFN-{gamma} and the Low-Grade Inflammatory Cytokine IL-1{beta} Systemically in Mice.
C. H. F. Hansen, H. Frokiaer, A. G. Christensen, A. Bergstrom, T. R. Licht, A. K. Hansen, and S. B. Metzdorff (2013)
J. Nutr. 143, 533-540
   Abstract »    Full Text »    PDF »
Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing.
D. Berry, B. Stecher, A. Schintlmeister, J. Reichert, S. Brugiroux, B. Wild, W. Wanek, A. Richter, I. Rauch, T. Decker, et al. (2013)
PNAS 110, 4720-4725
   Abstract »    Full Text »    PDF »
Innate Stat3-mediated induction of the antimicrobial protein Reg3{gamma} is required for host defense against MRSA pneumonia.
S.-M. Choi, J. P. McAleer, M. Zheng, D. A. Pociask, M. H. Kaplan, S. Qin, T. A. Reinhart, and J. K. Kolls (2013)
J. Exp. Med. 210, 551-561
   Abstract »    Full Text »    PDF »
big bang gene modulates gut immune tolerance in Drosophila.
F. Bonnay, E. Cohen-Berros, M. Hoffmann, S. Y. Kim, G. L. Boulianne, J. A. Hoffmann, N. Matt, and J.-M. Reichhart (2013)
PNAS 110, 2957-2962
   Abstract »    Full Text »    PDF »
Role of the Gut Microbiota in the Development and Function of Lymphoid Cells.
N. Kamada and G. Nunez (2013)
J. Immunol. 190, 1389-1395
   Abstract »    Full Text »    PDF »
The goblet cell: a key player in ischaemia-reperfusion injury.
M. E. V. Johansson and G. C. Hansson (2013)
Gut 62, 188-189
   Full Text »    PDF »
Multiple NSAID-Induced Hits Injure the Small Intestine: Underlying Mechanisms and Novel Strategies.
U. A. Boelsterli, M. R. Redinbo, and K. S. Saitta (2013)
Toxicol. Sci. 131, 654-667
   Abstract »    Full Text »    PDF »
Gut and Root Microbiota Commonalities.
S. T. Ramirez-Puebla, L. E. Servin-Garciduenas, B. Jimenez-Marin, L. M. Bolanos, M. Rosenblueth, J. Martinez, M. A. Rogel, E. Ormeno-Orrillo, and E. Martinez-Romero (2013)
Appl. Envir. Microbiol. 79, 2-9
   Abstract »    Full Text »    PDF »
Virulence Meets Metabolism: Cra and KdpE Gene Regulation in Enterohemorrhagic Escherichia coli.
J. W. Njoroge, Y. Nguyen, M. M. Curtis, C. G. Moreira, and V. Sperandio (2012)
mBio 3, e00280-12
   Abstract »    Full Text »    PDF »
The Bactericidal Activity of the C-type Lectin RegIII{beta} against Gram-negative Bacteria involves Binding to Lipid A.
T. Miki, O. Holst, and W.-D. Hardt (2012)
J. Biol. Chem. 287, 34844-34855
   Abstract »    Full Text »    PDF »
Innate immune signalling at the intestinal epithelium in homeostasis and disease.
J. Pott and M. Hornef (2012)
EMBO Rep. 13, 684-698
   Abstract »    Full Text »    PDF »
Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice.
C. Ubeda, L. Lipuma, A. Gobourne, A. Viale, I. Leiner, M. Equinda, R. Khanin, and E. G. Pamer (2012)
J. Exp. Med. 209, 1445-1456
   Abstract »    Full Text »    PDF »
Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria.
G. F. Sonnenberg, L. A. Monticelli, T. Alenghat, T. C. Fung, N. A. Hutnick, J. Kunisawa, N. Shibata, S. Grunberg, R. Sinha, A. M. Zahm, et al. (2012)
Science 336, 1321-1325
   Abstract »    Full Text »    PDF »
Interactions Between the Microbiota and the Immune System.
L. V. Hooper, D. R. Littman, and A. J. Macpherson (2012)
Science 336, 1268-1273
   Abstract »    Full Text »    PDF »
Virulence or Competition?.
V. Sperandio (2012)
Science 336, 1238-1239
   Abstract »    Full Text »    PDF »
Microbiota, Disease, and Back to Health: A Metastable Journey.
R. Blumberg and F. Powrie (2012)
Science Translational Medicine 4, 137rv7
   Full Text »    PDF »
Keeping Bacteria at a Distance.
M. E. V. Johansson and G. C. Hansson (2011)
Science 334, 182-183
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882