Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 334 (6055): 517-520

Copyright © 2011 by the American Association for the Advancement of Science

How Fast-Folding Proteins Fold

Kresten Lindorff-Larsen,1,*,{dagger} Stefano Piana,1,*,{dagger} Ron O. Dror,1 David E. Shaw1,2,{dagger}

Abstract: An outstanding challenge in the field of molecular biology has been to understand the process by which proteins fold into their characteristic three-dimensional structures. Here, we report the results of atomic-level molecular dynamics simulations, over periods ranging between 100 μs and 1 ms, that reveal a set of common principles underlying the folding of 12 structurally diverse proteins. In simulations conducted with a single physics-based energy function, the proteins, representing all three major structural classes, spontaneously and repeatedly fold to their experimentally determined native structures. Early in the folding process, the protein backbone adopts a nativelike topology while certain secondary structure elements and a small number of nonlocal contacts form. In most cases, folding follows a single dominant route in which elements of the native structure appear in an order highly correlated with their propensity to form in the unfolded state.

1 D. E. Shaw Research, New York, NY 10036, USA.
2 Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA.

* These authors contributed equally to the manuscript.

{dagger} To whom correspondence should be addressed. E-mail: david.shaw{at}DEShawResearch.com (D.E.S.); kresten.lindorff-larsen{at}DEShawResearch.com (K.L.-L.); stefano.piana-agostinetti{at}DEShawResearch.com (S.P.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
How force unfolding differs from chemical denaturation.
G. Stirnemann, S.-g. Kang, R. Zhou, and B. J. Berne (2014)
PNAS 111, 3413-3418
   Abstract »    Full Text »    PDF »
Computational Methods in Drug Discovery.
G. Sliwoski, S. Kothiwale, J. Meiler, and E. W. Lowe Jr. (2013)
Pharmacol. Rev. 66, 334-395
   Abstract »    Full Text »    PDF »
Folding of a large protein at high structural resolution.
B. T. Walters, L. Mayne, J. R. Hinshaw, T. R. Sosnick, and S. W. Englander (2013)
PNAS 110, 18898-18903
   Abstract »    Full Text »    PDF »
High-Speed Force Spectroscopy Unfolds Titin at the Velocity of Molecular Dynamics Simulations.
F. Rico, L. Gonzalez, I. Casuso, M. Puig-Vidal, and S. Scheuring (2013)
Science 342, 741-743
   Abstract »    Full Text »    PDF »
Ultrafast folding kinetics and cooperativity of villin headpiece in single-molecule force spectroscopy.
G. Zoldak, J. Stigler, B. Pelz, H. Li, and M. Rief (2013)
PNAS 110, 18156-18161
   Abstract »    Full Text »    PDF »
Comparing a simple theoretical model for protein folding with all-atom molecular dynamics simulations.
E. R. Henry, R. B. Best, and W. A. Eaton (2013)
PNAS 110, 17880-17885
   Abstract »    Full Text »    PDF »
Native contacts determine protein folding mechanisms in atomistic simulations.
R. B. Best, G. Hummer, and W. A. Eaton (2013)
PNAS 110, 17874-17879
   Abstract »    Full Text »    PDF »
High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations.
A. A. Chen and A. E. Garcia (2013)
PNAS 110, 16820-16825
   Abstract »    Full Text »    PDF »
Revealing what gets buried first in protein folding.
T. R. Sosnick and M. C. Baxa (2013)
PNAS 110, 16704-16705
   Full Text »    PDF »
Multiscaled exploration of coupled folding and binding of an intrinsically disordered molecular recognition element in measles virus nucleoprotein.
Y. Wang, X. Chu, S. Longhi, P. Roche, W. Han, E. Wang, and J. Wang (2013)
PNAS 110, E3743-E3752
   Abstract »    Full Text »    PDF »
Exploration of conformational transition pathways from coarse-grained simulations.
P. Sfriso, A. Hospital, A. Emperador, and M. Orozco (2013)
Bioinformatics 29, 1980-1986
   Abstract »    Full Text »    PDF »
NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers.
A. Sekhar and L. E. Kay (2013)
PNAS 110, 12867-12874
   Abstract »    Full Text »    PDF »
Rational modification of protein stability by targeting surface sites leads to complicated results.
S. Xiao, V. Patsalo, B. Shan, Y. Bi, D. F. Green, and D. P. Raleigh (2013)
PNAS 110, 11337-11342
   Abstract »    Full Text »    PDF »
Misplaced helix slows down ultrafast pressure-jump protein folding.
M. B. Prigozhin, Y. Liu, A. J. Wirth, S. Kapoor, R. Winter, K. Schulten, and M. Gruebele (2013)
PNAS 110, 8087-8092
   Abstract »    Full Text »    PDF »
Disorder guides protein function.
P. C. Whitford (2013)
PNAS 110, 7114-7115
   Full Text »    PDF »
Atomic-level simulation of current-voltage relationships in single-file ion channels.
M. O. Jensen, V. Jogini, M. P. Eastwood, and D. E. Shaw (2013)
J. Gen. Physiol. 141, 619-632
   Abstract »    Full Text »    PDF »
Characterization of the free-energy landscapes of proteins by NMR-guided metadynamics.
D. Granata, C. Camilloni, M. Vendruscolo, and A. Laio (2013)
PNAS 110, 6817-6822
   Abstract »    Full Text »    PDF »
A "slow" protein folds quickly in the end.
R. B. Best (2013)
PNAS 110, 5744-5745
   Full Text »    PDF »
Atomic-level description of ubiquitin folding.
S. Piana, K. Lindorff-Larsen, and D. E. Shaw (2013)
PNAS 110, 5915-5920
   Abstract »    Full Text »    PDF »
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit.
S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, et al. (2013)
Bioinformatics 29, 845-854
   Abstract »    Full Text »    PDF »
Transition paths, diffusive processes, and preequilibria of protein folding.
Z. Zhang and H. S. Chan (2012)
PNAS 109, 20919-20924
   Abstract »    Full Text »    PDF »
Measurement of energy landscape roughness of folded and unfolded proteins.
L. Milanesi, J. P. Waltho, C. A. Hunter, D. J. Shaw, G. S. Beddard, G. D. Reid, S. Dev, and M. Volk (2012)
PNAS 109, 19563-19568
   Abstract »    Full Text »    PDF »
The Protein-Folding Problem, 50 Years On.
K. A. Dill and J. L. MacCallum (2012)
Science 338, 1042-1046
   Abstract »    Full Text »    PDF »
Mechanism of Drug Efficacy Within the EGF Receptor Revealed by Microsecond Molecular Dynamics Simulation.
S. Wan, D. W. Wright, and P. V. Coveney (2012)
Mol. Cancer Ther. 11, 2394-2400
   Abstract »    Full Text »    PDF »
Temperature dependence of protein folding kinetics in living cells.
M. Guo, Y. Xu, and M. Gruebele (2012)
PNAS 109, 17863-17867
   Abstract »    Full Text »    PDF »
Energy landscape and multiroute folding of topologically complex proteins adenylate kinase and 2ouf-knot.
W. Li, T. Terakawa, W. Wang, and S. Takada (2012)
PNAS 109, 17789-17794
   Abstract »    Full Text »    PDF »
Simple few-state models reveal hidden complexity in protein folding.
K. A. Beauchamp, R. McGibbon, Y.-S. Lin, and V. S. Pande (2012)
PNAS 109, 17807-17813
   Abstract »    Full Text »    PDF »
Protein folding kinetics and thermodynamics from atomistic simulation.
S. Piana, K. Lindorff-Larsen, and D. E. Shaw (2012)
PNAS 109, 17845-17850
   Abstract »    Full Text »    PDF »
Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy.
A. Soranno, B. Buchli, D. Nettels, R. R. Cheng, S. Muller-Spath, S. H. Pfeil, A. Hoffmann, E. A. Lipman, D. E. Makarov, and B. Schuler (2012)
PNAS 109, 17800-17806
   Abstract »    Full Text »    PDF »
De novo prediction of protein folding pathways and structure using the principle of sequential stabilization.
A. N. Adhikari, K. F. Freed, and T. R. Sosnick (2012)
PNAS 109, 17442-17447
   Abstract »    Full Text »    PDF »
Folding helical proteins in explicit solvent using dihedral-biased tempering.
C. Zhang and J. Ma (2012)
PNAS 109, 8139-8144
   Abstract »    Full Text »    PDF »
Single-Molecule Fluorescence Experiments Determine Protein Folding Transition Path Times.
H. S. Chung, K. McHale, J. M. Louis, and W. A. Eaton (2012)
Science 335, 981-984
   Abstract »    Full Text »    PDF »
Exploring one-state downhill protein folding in single molecules.
J. Liu, L. A. Campos, M. Cerminara, X. Wang, R. Ramanathan, D. S. English, and V. Munoz (2012)
PNAS 109, 179-184
   Abstract »    Full Text »    PDF »
How Proteins Fold.
T. R. Sosnick and J. R. Hinshaw (2011)
Science 334, 464-465
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882