Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 334 (6056): 678-683

Copyright © 2011 by the American Association for the Advancement of Science

mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase

Roberto Zoncu,1,2,3,4 Liron Bar-Peled,1,2,3 Alejo Efeyan,1,2,3 Shuyu Wang,1,2,3 Yasemin Sancak,1,2,3 David M. Sabatini1,2,3,4,5,*

Abstract: The mTOR complex 1 (mTORC1) protein kinase is a master growth regulator that is stimulated by amino acids. Amino acids activate the Rag guanosine triphosphatases (GTPases), which promote the translocation of mTORC1 to the lysosomal surface, the site of mTORC1 activation. We found that the vacuolar H+–adenosine triphosphatase ATPase (v-ATPase) is necessary for amino acids to activate mTORC1. The v-ATPase engages in extensive amino acid–sensitive interactions with the Ragulator, a scaffolding complex that anchors the Rag GTPases to the lysosome. In a cell-free system, ATP hydrolysis by the v-ATPase was necessary for amino acids to regulate the v-ATPase-Ragulator interaction and promote mTORC1 translocation. Results obtained in vitro and in human cells suggest that amino acid signaling begins within the lysosomal lumen. These results identify the v-ATPase as a component of the mTOR pathway and delineate a lysosome-associated machinery for amino acid sensing.

1 Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.
2 Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
3 David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
4 Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA.
5 Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA.

* To whom correspondence should be addressed. E-mail: sabatini{at}wi.mit.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The tumor susceptibility gene TMEM127 is mutated in renal cell carcinomas and modulates endolysosomal function.
Y. Qin, Y. Deng, C. J. Ricketts, S. Srikantan, E. Wang, E. R. Maher, and P. L. M. Dahia (2014)
Hum. Mol. Genet. 23, 2428-2439
   Abstract »    Full Text »    PDF »
Endolysosomal Membrane Trafficking Complexes Drive Nutrient-Dependent TORC1 Signaling to Control Cell Growth in Saccharomyces cerevisiae.
J. M. Kingsbury, N. D. Sen, T. Maeda, J. Heitman, and M. E. Cardenas (2014)
Genetics 196, 1077-1089
   Abstract »    Full Text »    PDF »
Roles for PI(3,5)P2 in nutrient sensing through TORC1.
N. Jin, K. Mao, Y. Jin, G. Tevzadze, E. J. Kauffman, S. Park, D. Bridges, R. Loewith, A. R. Saltiel, D. J. Klionsky, et al. (2014)
Mol. Biol. Cell 25, 1171-1185
   Abstract »    Full Text »    PDF »
Glucocerebrosidase is shaking up the synucleinopathies.
M. Siebert, E. Sidransky, and W. Westbroek (2014)
Brain
   Abstract »    Full Text »    PDF »
New Autophagy Reporter Mice Reveal Dynamics of Proximal Tubular Autophagy.
L. Li, Z. V. Wang, J. A. Hill, and F. Lin (2014)
J. Am. Soc. Nephrol. 25, 305-315
   Abstract »    Full Text »    PDF »
Amino Acids Activate Mammalian Target of Rapamycin (mTOR) Complex 1 without Changing Rag GTPase Guanyl Nucleotide Charging.
N. Oshiro, J. Rapley, and J. Avruch (2014)
J. Biol. Chem. 289, 2658-2674
   Abstract »    Full Text »    PDF »
The Nutrient-Responsive Transcription Factor TFE3 Promotes Autophagy, Lysosomal Biogenesis, and Clearance of Cellular Debris.
J. A. Martina, H. I. Diab, L. Lishu, L. Jeong-A, S. Patange, N. Raben, and R. Puertollano (2014)
Science Signaling 7, ra9
   Abstract »    Full Text »    PDF »
Regulated Assembly of Vacuolar ATPase Is Increased during Cluster Disruption-induced Maturation of Dendritic Cells through a Phosphatidylinositol 3-Kinase/mTOR-dependent Pathway.
R. Liberman, S. Bond, M. G. Shainheit, M. J. Stadecker, and M. Forgac (2014)
J. Biol. Chem. 289, 1355-1363
   Abstract »    Full Text »    PDF »
Role of amino acid transporters in amino acid sensing.
P. M. Taylor (2014)
Am J Clin Nutr 99, 223S-230S
   Abstract »    Full Text »    PDF »
Integration of signals generated by nutrients, hormones, and exercise in skeletal muscle.
S. R. Kimball (2014)
Am J Clin Nutr 99, 237S-242S
   Abstract »    Full Text »    PDF »
Suppression of Lysosome Function Induces Autophagy via a Feedback Down-regulation of MTOR Complex 1 (MTORC1) Activity.
M. Li, B. Khambu, H. Zhang, J.-H. Kang, X. Chen, D. Chen, L. Vollmer, P.-Q. Liu, A. Vogt, and X.-M. Yin (2013)
J. Biol. Chem. 288, 35769-35780
   Abstract »    Full Text »    PDF »
Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies.
M. Sandri, L. Coletto, P. Grumati, and P. Bonaldo (2013)
J. Cell Sci. 126, 5325-5333
   Abstract »    Full Text »    PDF »
Endocytosis and Cancer.
I. Mellman and Y. Yarden (2013)
Cold Spring Harb Perspect Biol 5, a016949
   Abstract »    Full Text »    PDF »
mTOR regulates phagosome and entotic vacuole fission.
M. Krajcovic, S. Krishna, L. Akkari, J. A. Joyce, and M. Overholtzer (2013)
Mol. Biol. Cell 24, 3736-3745
   Abstract »    Full Text »    PDF »
Where is mTOR and what is it doing there?.
C. Betz and M. N. Hall (2013)
J. Cell Biol. 203, 563-574
   Abstract »    Full Text »    PDF »
Endosomal acidification by Na+/H+ exchanger NHE5 regulates TrkA cell-surface targeting and NGF-induced PI3K signaling.
G. H. Diering, Y. Numata, S. Fan, J. Church, and M. Numata (2013)
Mol. Biol. Cell 24, 3435-3448
   Abstract »    Full Text »    PDF »
The vesicular ATPase: A missing link between acidification and exocytosis.
D. Wang and P. R. Hiesinger (2013)
J. Cell Biol. 203, 171-173
   Abstract »    Full Text »    PDF »
Time course of gene expression during mouse skeletal muscle hypertrophy.
T. Chaillou, J. D. Lee, J. H. England, K. A. Esser, and J. J. McCarthy (2013)
J Appl Physiol 115, 1065-1074
   Abstract »    Full Text »    PDF »
Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases.
C. S. Petit, A. Roczniak-Ferguson, and S. M. Ferguson (2013)
J. Cell Biol. 202, 1107-1122
   Abstract »    Full Text »    PDF »
A recollection of mTOR signaling in learning and memory.
T. E. Graber, P. K. McCamphill, and W. S. Sossin (2013)
Learn. Mem. 20, 518-530
   Abstract »    Full Text »    PDF »
In Scarcity and Abundance: Metabolic Signals Regulating Cell Growth.
S. Saad, M. Peter, and R. Dechant (2013)
Physiology 28, 298-309
   Abstract »    Full Text »    PDF »
Two Pore Channel 2 (TPC2) Inhibits Autophagosomal-Lysosomal Fusion by Alkalinizing Lysosomal pH.
Y. Lu, B.-X. Hao, R. Graeff, C. W. M. Wong, W.-T. Wu, and J. Yue (2013)
J. Biol. Chem. 288, 24247-24263
   Abstract »    Full Text »    PDF »
The lysosomal signaling anchor p18/LAMTOR1 controls epidermal development by regulating lysosome-mediated catabolic processes.
T. Soma-Nagae, S. Nada, M. Kitagawa, Y. Takahashi, S. Mori, C. Oneyama, and M. Okada (2013)
J. Cell Sci. 126, 3575-3584
   Abstract »    Full Text »    PDF »
The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis.
L. Ge, D. Melville, M. Zhang, and R. Schekman (2013)
eLife Sci 2, e00947
   Abstract »    Full Text »    PDF »
Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation.
T. Balla (2013)
Physiol Rev 93, 1019-1137
   Abstract »    Full Text »    PDF »
Evolutionarily conserved regulation of TOR signalling.
T. Takahara and T. Maeda (2013)
J. Biochem. 154, 1-10
   Abstract »    Full Text »    PDF »
Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease.
I. Nemazanyy, B. Blaauw, C. Paolini, C. Caillaud, F. Protasi, A. Mueller, T. Proikas-Cezanne, R. C. Russell, K.-L. Guan, I. Nishino, et al. (2013)
EMBO Mol Med. 5, 870-890
   Abstract »    Full Text »    PDF »
An Extended Proteome Map of the Lysosomal Membrane Reveals Novel Potential Transporters.
A. Chapel, S. Kieffer-Jaquinod, C. Sagne, Q. Verdon, C. Ivaldi, M. Mellal, J. Thirion, M. Jadot, C. Bruley, J. Garin, et al. (2013)
Mol. Cell. Proteomics 12, 1572-1588
   Abstract »    Full Text »    PDF »
Regulatory Cells and Transplantation Tolerance.
S. P. Cobbold and H. Waldmann (2013)
Cold Spring Harb Perspect Med 3, a015545
   Abstract »    Full Text »    PDF »
A Tumor Suppressor Complex with GAP Activity for the Rag GTPases That Signal Amino Acid Sufficiency to mTORC1.
L. Bar-Peled, L. Chantranupong, A. D. Cherniack, W. W. Chen, K. A. Ottina, B. C. Grabiner, E. D. Spear, S. L. Carter, M. Meyerson, and D. M. Sabatini (2013)
Science 340, 1100-1106
   Abstract »    Full Text »    PDF »
Amino Acid Deprivation Inhibits TORC1 Through a GTPase-Activating Protein Complex for the Rag Family GTPase Gtr1.
N. Panchaud, M.-P. Peli-Gulli, and C. De Virgilio (2013)
Science Signaling 6, ra42
   Abstract »    Full Text »    PDF »
On the Rab again--the PATh to mTORC1 activation.
N. Gopaldass, M. Rompf, and A. Mayer (2013)
EMBO Rep. 14, 398-399
   Full Text »    PDF »
Rab12 regulates mTORC1 activity and autophagy through controlling the degradation of amino-acid transporter PAT4.
T. Matsui and M. Fukuda (2013)
EMBO Rep. 14, 450-457
   Abstract »    Full Text »    PDF »
Regulation of mTORC1 and its impact on gene expression at a glance.
M. Laplante and D. M. Sabatini (2013)
J. Cell Sci. 126, 1713-1719
   Full Text »    PDF »
The N Termini of a-Subunit Isoforms Are Involved in Signaling between Vacuolar H+-ATPase (V-ATPase) and Cytohesin-2.
H. Hosokawa, P. V. Dip, M. Merkulova, A. Bakulina, Z. Zhuang, A. Khatri, X. Jian, S. M. Keating, S. A. Bueler, J. L. Rubinstein, et al. (2013)
J. Biol. Chem. 288, 5896-5913
   Abstract »    Full Text »    PDF »
Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes.
J. A. Martina and R. Puertollano (2013)
J. Cell Biol. 200, 475-491
   Abstract »    Full Text »    PDF »
Host mTORC1 Signaling Regulates Andes Virus Replication.
S. McNulty, M. Flint, S. T. Nichol, and C. F. Spiropoulou (2013)
J. Virol. 87, 912-922
   Abstract »    Full Text »    PDF »
Inhibition of Glycogen Synthase Kinase-3 Ameliorates {beta}-Amyloid Pathology and Restores Lysosomal Acidification and Mammalian Target of Rapamycin Activity in the Alzheimer Disease Mouse Model: IN VIVO AND IN VITRO STUDIES.
L. Avrahami, D. Farfara, M. Shaham-Kol, R. Vassar, D. Frenkel, and H. Eldar-Finkelman (2013)
J. Biol. Chem. 288, 1295-1306
   Abstract »    Full Text »    PDF »
mTOR-Dependent Cell Survival Mechanisms.
C.-M. Hung, L. Garcia-Haro, C. A. Sparks, and D. A. Guertin (2012)
Cold Spring Harb Perspect Biol 4, a008771
   Abstract »    Full Text »    PDF »
The cell biology of disease: Lysosomal storage disorders: The cellular impact of lysosomal dysfunction.
F. M. Platt, B. Boland, and A. C. van der Spoel (2012)
J. Cell Biol. 199, 723-734
   Abstract »    Full Text »    PDF »
Regulation of mRNA Translation by Signaling Pathways.
P. P. Roux and I. Topisirovic (2012)
Cold Spring Harb Perspect Biol 4, a012252
   Abstract »    Full Text »    PDF »
Epidermal Growth Factor-induced Vacuolar (H+)-ATPase Assembly: A ROLE IN SIGNALING VIA mTORC1 ACTIVATION.
Y. Xu, A. Parmar, E. Roux, A. Balbis, V. Dumas, S. Chevalier, and B. I. Posner (2012)
J. Biol. Chem. 287, 26409-26422
   Abstract »    Full Text »    PDF »
Mammalian target of rapamycin and the kidney. I. The signaling pathway.
W. Lieberthal and J. S. Levine (2012)
Am J Physiol Renal Physiol 303, F1-F10
   Abstract »    Full Text »    PDF »
Cardiac mTOR protects the heart against ischemia-reperfusion injury.
T. Aoyagi, Y. Kusakari, C.-Y. Xiao, B. T. Inouye, M. Takahashi, M. Scherrer-Crosbie, A. Rosenzweig, K. Hara, and T. Matsui (2012)
Am J Physiol Heart Circ Physiol 303, H75-H85
   Abstract »    Full Text »    PDF »
Rab5 Proteins Regulate Activation and Localization of Target of Rapamycin Complex 1.
D. Bridges, K. Fisher, S. N. Zolov, T. Xiong, K. Inoki, L. S. Weisman, and A. R. Saltiel (2012)
J. Biol. Chem. 287, 20913-20921
   Abstract »    Full Text »    PDF »
The Transcription Factor TFEB Links mTORC1 Signaling to Transcriptional Control of Lysosome Homeostasis.
A. Roczniak-Ferguson, C. S. Petit, F. Froehlich, S. Qian, J. Ky, B. Angarola, T. C. Walther, and S. M. Ferguson (2012)
Science Signaling 5, ra42
   Abstract »    Full Text »    PDF »
Structure-Activity Analysis of Niclosamide Reveals Potential Role for Cytoplasmic pH in Control of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling.
B. D. Fonseca, G. H. Diering, M. A. Bidinosti, K. Dalal, T. Alain, A. D. Balgi, R. Forestieri, M. Nodwell, C. V. Rajadurai, C. Gunaratnam, et al. (2012)
J. Biol. Chem. 287, 17530-17545
   Abstract »    Full Text »    PDF »
Autophagy and cell growth - the yin and yang of nutrient responses.
T. P. Neufeld (2012)
J. Cell Sci. 125, 2359-2368
   Abstract »    Full Text »    PDF »
Regulation of Vacuolar H+-ATPase Activity by the Cdc42 Effector Ste20 in Saccharomyces cerevisiae.
M. Lin, S. C. Li, P. M. Kane, and T. Hofken (2012)
Eukaryot. Cell 11, 442-451
   Abstract »    Full Text »    PDF »
Phospholipase D and mTORC1: Nutrients Are What Bring Them Together.
B. M. Wiczer and G. Thomas (2012)
Science Signaling 5, pe13
   Abstract »    Full Text »    PDF »
Luminal and Cytosolic pH Feedback on Proton Pump Activity and ATP Affinity of V-type ATPase from Arabidopsis.
F. Rienmuller, I. Dreyer, G. Schonknecht, A. Schulz, K. Schumacher, R. Nagy, E. Martinoia, I. Marten, and R. Hedrich (2012)
J. Biol. Chem. 287, 8986-8993
   Abstract »    Full Text »    PDF »
Regulation of TOR by small GTPases.
R. V. Duran and M. N. Hall (2012)
EMBO Rep. 13, 121-128
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 8 November 2011.
D. M. Sabatini and A. M. VanHook (2011)
Science Signaling 4, pc24
   Abstract »    Full Text »
Growth Signaling from Inside.
H. Abrahamsen and H. Stenmark (2011)
Science 334, 611-612
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882