Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 334 (6060): 1278-1283

Copyright © 2011 by the American Association for the Advancement of Science

Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses

Dimitrios Anastasiou,1,2 George Poulogiannis,1,2 John M. Asara,1,3 Matthew B. Boxer,4 Jian-kang Jiang,4 Min Shen,4 Gary Bellinger,1,5 Atsuo T. Sasaki,1,2 Jason W. Locasale,1,2 Douglas S. Auld,4,* Craig J. Thomas,4 Matthew G. Vander Heiden,5,6 Lewis C. Cantley1,2,{dagger}

Abstract: Control of intracellular reactive oxygen species (ROS) concentrations is critical for cancer cell survival. We show that, in human lung cancer cells, acute increases in intracellular concentrations of ROS caused inhibition of the glycolytic enzyme pyruvate kinase M2 (PKM2) through oxidation of Cys358. This inhibition of PKM2 is required to divert glucose flux into the pentose phosphate pathway and thereby generate sufficient reducing potential for detoxification of ROS. Lung cancer cells in which endogenous PKM2 was replaced with the Cys358 to Ser358 oxidation-resistant mutant exhibited increased sensitivity to oxidative stress and impaired tumor formation in a xenograft model. Besides promoting metabolic changes required for proliferation, the regulatory properties of PKM2 may confer an additional advantage to cancer cells by allowing them to withstand oxidative stress.

1 Beth Israel Deaconess Medical Center, Department of Medicine-Division of Signal Transduction, Boston, MA 02115, USA.
2 Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
3 Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
4 NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA.
5 Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
6 Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.

* Present address: Novartis Institutes for Biomedical Research, Center for Proteomic Chemistry, Cambridge, MA 02139, USA.

{dagger} To whom correspondence should be addressed. E-mail: lewis_cantley{at}

Missense Mutations in Pyruvate Kinase M2 Promote Cancer Metabolism, Oxidative Endurance, Anchorage Independence, and Tumor Growth in a Dominant Negative Manner.
M. A. Iqbal, F. A. Siddiqui, N. Chaman, V. Gupta, B. Kumar, P. Gopinath, and R. N. K. Bamezai (2014)
J. Biol. Chem. 289, 8098-8105
   Abstract »    Full Text »    PDF »
Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis.
N.-M. Gruning, D. Du, M. A. Keller, B. F. Luisi, and M. Ralser (2014)
Open Bio 4, 130232
   Abstract »    Full Text »    PDF »
Ethanol-Induced Upregulation of 10-Formyltetrahydrofolate Dehydrogenase Helps Relieve Ethanol-Induced Oxidative Stress.
T.-H. Hsiao, C.-J. Lin, Y.-S. Chung, G.-H. Lee, T.-T. Kao, W.-N. Chang, B.-H. Chen, J.-J. Hung, and T.-F. Fu (2014)
Mol. Cell. Biol. 34, 498-509
   Abstract »    Full Text »    PDF »
JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1{alpha}-mediated glucose metabolism.
H.-J. Wang, Y.-J. Hsieh, W.-C. Cheng, C.-P. Lin, Y.-s. Lin, S.-F. Yang, C.-C. Chen, Y. Izumiya, J.-S. Yu, H.-J. Kung, et al. (2014)
PNAS 111, 279-284
   Abstract »    Full Text »    PDF »
Direct Measurements of Oscillatory Glycolysis in Pancreatic Islet {beta}-Cells Using Novel Fluorescence Resonance Energy Transfer (FRET) Biosensors for Pyruvate Kinase M2 Activity.
M. J. Merrins, A. R. Van Dyke, A. K. Mapp, M. A. Rizzo, and L. S. Satin (2013)
J. Biol. Chem. 288, 33312-33322
   Abstract »    Full Text »    PDF »
Selective Targeting of the Cysteine Proteome by Thioredoxin and Glutathione Redox Systems.
Y.-M. Go, J. R. Roede, D. I. Walker, D. M. Duong, N. T. Seyfried, M. Orr, Y. Liang, K. D. Pennell, and D. P. Jones (2013)
Mol. Cell. Proteomics 12, 3285-3296
   Abstract »    Full Text »    PDF »
FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells.
H. Yeo, C. A. Lyssiotis, Y. Zhang, H. Ying, J. M. Asara, L. C. Cantley, and J.-H. Paik (2013)
EMBO J. 32, 2589-2602
   Abstract »    Full Text »    PDF »
Pharmacologic Activation of PKM2 Slows Lung Tumor Xenograft Growth.
K. M. Parnell, J. M. Foulks, R. N. Nix, A. Clifford, J. Bullough, B. Luo, A. Senina, D. Vollmer, J. Liu, V. McCarthy, et al. (2013)
Mol. Cancer Ther. 12, 1453-1460
   Abstract »    Full Text »    PDF »
A Metabolomics-driven Elucidation of the Anti-obesity Mechanisms of Xanthohumol.
J. S. Kirkwood, L. L. Legette, C. L. Miranda, Y. Jiang, and J. F. Stevens (2013)
J. Biol. Chem. 288, 19000-19013
   Abstract »    Full Text »    PDF »
Antioxidant Enzymes Mediate Survival of Breast Cancer Cells Deprived of Extracellular Matrix.
C. A. Davison, S. M. Durbin, M. R. Thau, V. R. Zellmer, S. E. Chapman, J. Diener, C. Wathen, W. M. Leevy, and Z. T. Schafer (2013)
Cancer Res. 73, 3704-3715
   Abstract »    Full Text »    PDF »
Protein Tyrosine Phosphatase 1B Regulates Pyruvate Kinase M2 Tyrosine Phosphorylation.
A. Bettaieb, J. Bakke, N. Nagata, K. Matsuo, Y. Xi, S. Liu, D. AbouBechara, R. Melhem, K. Stanhope, B. Cummings, et al. (2013)
J. Biol. Chem. 288, 17360-17371
   Abstract »    Full Text »    PDF »
M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation.
H. P. Morgan, F. J. O'Reilly, M. A. Wear, J. R. O'Neill, L. A. Fothergill-Gilmore, T. Hupp, and M. D. Walkinshaw (2013)
PNAS 110, 5881-5886
   Abstract »    Full Text »    PDF »
Allosteric Regulation of PKM2 Allows Cellular Adaptation to Different Physiological States.
D. Y. Gui, C. A. Lewis, and M. G. Vander Heiden (2013)
Science Signaling 6, pe7
   Abstract »    Full Text »    PDF »
Metabolic changes in cancer: beyond the Warburg effect.
W. Wu and S. Zhao (2013)
Acta Biochim Biophys Sin 45, 18-26
   Abstract »    Full Text »    PDF »
The Metabolomic Signature of Malignant Glioma Reflects Accelerated Anabolic Metabolism.
P. Chinnaiyan, E. Kensicki, G. Bloom, A. Prabhu, B. Sarcar, S. Kahali, S. Eschrich, X. Qu, P. Forsyth, and R. Gillies (2012)
Cancer Res. 72, 5878-5888
   Abstract »    Full Text »    PDF »
Cancer Metabolism: What we Can Learn from Proteomic Analysis by Mass Spectrometry.
W. Zhou, L. A. Liotta, and E. F. Petricoin (2012)
Cancer Genomics Proteomics 9, 373-381
   Abstract »    Full Text »    PDF »
Molecular Pathways: Tumor Cells Co-opt the Brain-Specific Metabolism Gene CPT1C to Promote Survival.
P. T. Reilly and T. W. Mak (2012)
Clin. Cancer Res. 18, 5850-5855
   Abstract »    Full Text »    PDF »
Manipulation of PK-M mutually exclusive alternative splicing by antisense oligonucleotides.
Z. Wang, H. Y. Jeon, F. Rigo, C. F. Bennett, and A. R. Krainer (2012)
Open Bio 2, 120133
   Abstract »    Full Text »    PDF »
Targeting Cancer Metabolism.
B. A. Teicher, W. M. Linehan, and L. J. Helman (2012)
Clin. Cancer Res. 18, 5537-5545
   Abstract »    Full Text »    PDF »
Pyruvate Kinase M2: Multiple Faces for Conferring Benefits on Cancer Cells.
M. Tamada, M. Suematsu, and H. Saya (2012)
Clin. Cancer Res. 18, 5554-5561
   Abstract »    Full Text »    PDF »
Cancer Cell Metabolism: One Hallmark, Many Faces.
J. R. Cantor and D. M. Sabatini (2012)
Cancer Discovery 2, 881-898
   Abstract »    Full Text »    PDF »
Reciprocal Metabolic Reprogramming through Lactate Shuttle Coordinately Influences Tumor-Stroma Interplay.
T. Fiaschi, A. Marini, E. Giannoni, M. L. Taddei, P. Gandellini, A. De Donatis, M. Lanciotti, S. Serni, P. Cirri, and P. Chiarugi (2012)
Cancer Res. 72, 5130-5140
   Abstract »    Full Text »    PDF »
Phosphofructokinase 1 Glycosylation Regulates Cell Growth and Metabolism.
W. Yi, P. M. Clark, D. E. Mason, M. C. Keenan, C. Hill, W. A. Goddard III, E. C. Peters, E. M. Driggers, and L. C. Hsieh-Wilson (2012)
Science 337, 975-980
   Abstract »    Full Text »    PDF »
Combination of an Allosteric Akt Inhibitor MK-2206 with Etoposide or Rapamycin Enhances the Antitumor Growth Effect in Neuroblastoma.
Z. Li, S. Yan, N. Attayan, S. Ramalingam, and C. J. Thiele (2012)
Clin. Cancer Res. 18, 3603-3615
   Abstract »    Full Text »    PDF »
Signaling in Control of Cell Growth and Metabolism.
P. S. Ward and C. B. Thompson (2012)
Cold Spring Harb Perspect Biol 4, a006783
   Abstract »    Full Text »    PDF »
Inhibition of Nicotinamide Phosphoribosyltransferase (NAMPT) Activity by Small Molecule GMX1778 Regulates Reactive Oxygen Species (ROS)-mediated Cytotoxicity in a p53- and Nicotinic Acid Phosphoribosyltransferase1 (NAPRT1)-dependent Manner.
D. Cerna, H. Li, S. Flaherty, N. Takebe, C. N. Coleman, and S. S. Yoo (2012)
J. Biol. Chem. 287, 22408-22417
   Abstract »    Full Text »    PDF »
Links between metabolism and cancer.
C. V. Dang (2012)
Genes & Dev. 26, 877-890
   Abstract »    Full Text »    PDF »
Functional Metabolic Screen Identifies 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 as an Important Regulator of Prostate Cancer Cell Survival.
S. Ros, C. R. Santos, S. Moco, F. Baenke, G. Kelly, M. Howell, N. Zamboni, and A. Schulze (2012)
Cancer Discovery 2, 328-343
   Abstract »    Full Text »    PDF »
Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species.
H. Miki and Y. Funato (2012)
J. Biochem. 151, 255-261
   Abstract »    Full Text »    PDF »
Targeting glucose metabolism for cancer therapy.
R. B. Hamanaka and N. S. Chandel (2012)
J. Exp. Med. 209, 211-215
   Abstract »    Full Text »    PDF »
Warburg Effect and Redox Balance.
R. B. Hamanaka and N. S. Chandel (2011)
Science 334, 1219-1220
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882