Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 335 (6064): 85-88

Copyright © 2012 by the American Association for the Advancement of Science

Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

Fen-Fen Soon,1,2,* Ley-Moy Ng,1,2,* X. Edward Zhou,1,* Graham M. West,3 Amanda Kovach,1 M. H. Eileen Tan,1,2 Kelly M. Suino-Powell,1 Yuanzheng He,1 Yong Xu,1 Michael J. Chalmers,3 Joseph S. Brunzelle,4 Huiming Zhang,5 Huaiyu Yang,6 Hualiang Jiang,6 Jun Li,1,2 Eu-Leong Yong,2 Sean Cutler,7 Jian-Kang Zhu,5 Patrick R. Griffin,3 Karsten Melcher,1,{dagger} H. Eric Xu1,8,{dagger}

Abstract: Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

1 Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA.
2 Department of Obstetrics and Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 119228.
3 Department of Molecular Therapeutics, Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way No. 2A2, Jupiter, FL 33458, USA.
4 Department of Molecular Pharmacology and Biological Chemistry, Life Sciences Collaborative Access Team (LS-CAT), Synchrotron Research Center, Northwestern University, Argonne, IL 60439, USA.
5 Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
6 Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
7 Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA.
8 VARI-SIMM Center, Center for Structure and Function of Drug Targets, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: eric.xu{at}vai.org (H.E.X.); Karsten.Melcher{at}vai.org (K.M.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors.
S. Fuchs, S. V. Tischer, C. Wunschel, A. Christmann, and E. Grill (2014)
PNAS 111, 5741-5746
   Abstract »    Full Text »    PDF »
Abscisic acid dynamics in roots detected with genetically encoded FRET sensors.
A. M. Jones, J. A. Danielson, S. N. ManojKumar, V. Lanquar, G. Grossmann, and W. B. Frommer (2014)
eLife Sci 3, e01741
   Abstract »    Full Text »    PDF »
Structure of a PLS-class Pentatricopeptide Repeat Protein Provides Insights into Mechanism of RNA Recognition.
T. Ban, J. Ke, R. Chen, X. Gu, M. H. E. Tan, X. E. Zhou, Y. Kang, K. Melcher, J.-K. Zhu, and H. E. Xu (2013)
J. Biol. Chem. 288, 31540-31548
   Abstract »    Full Text »    PDF »
ABI1 and PP2CA Phosphatases Are Negative Regulators of Snf1-Related Protein Kinase1 Signaling in Arabidopsis.
A. Rodrigues, M. Adamo, P. Crozet, L. Margalha, A. Confraria, C. Martinho, A. Elias, A. Rabissi, V. Lumbreras, M. Gonzalez-Guzman, et al. (2013)
PLANT CELL 25, 3871-3884
   Abstract »    Full Text »    PDF »
The PYL4 A194T Mutant Uncovers a Key Role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA Interaction for Abscisic Acid Signaling and Plant Drought Resistance.
G. A. Pizzio, L. Rodriguez, R. Antoni, M. Gonzalez-Guzman, C. Yunta, E. Merilo, H. Kollist, A. Albert, and P. L. Rodriguez (2013)
Plant Physiology 163, 441-455
   Abstract »    Full Text »    PDF »
Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance.
M. Okamoto, F. C. Peterson, A. Defries, S.-Y. Park, A. Endo, E. Nambara, B. F. Volkman, and S. R. Cutler (2013)
PNAS 110, 12132-12137
   Abstract »    Full Text »    PDF »
Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action.
P. Wang, L. Xue, G. Batelli, S. Lee, Y.-J. Hou, M. J. Van Oosten, H. Zhang, W. A. Tao, and J.-K. Zhu (2013)
PNAS 110, 11205-11210
   Abstract »    Full Text »    PDF »
PYR/RCAR Receptors Contribute to Ozone-, Reduced Air Humidity-, Darkness-, and CO2-Induced Stomatal Regulation.
E. Merilo, K. Laanemets, H. Hu, S. Xue, L. Jakobson, I. Tulva, M. Gonzalez-Guzman, P. L. Rodriguez, J. I. Schroeder, M. Brosche, et al. (2013)
Plant Physiology 162, 1652-1668
   Abstract »    Full Text »    PDF »
Genetics and Phosphoproteomics Reveal a Protein Phosphorylation Network in the Abscisic Acid Signaling Pathway in Arabidopsis thaliana.
T. Umezawa, N. Sugiyama, F. Takahashi, J. C. Anderson, Y. Ishihama, S. C. Peck, and K. Shinozaki (2013)
Science Signaling 6, rs8
   Abstract »    Full Text »    PDF »
HONSU, a Protein Phosphatase 2C, Regulates Seed Dormancy by Inhibiting ABA Signaling in Arabidopsis.
W. Kim, Y. Lee, J. Park, N. Lee, and G. Choi (2013)
Plant Cell Physiol. 54, 555-572
   Abstract »    Full Text »    PDF »
Nepenthesin from Monkey Cups for Hydrogen/Deuterium Exchange Mass Spectrometry.
M. Rey, M. Yang, K. M. Burns, Y. Yu, S. P. Lees-Miller, and D. C. Schriemer (2013)
Mol. Cell. Proteomics 12, 464-472
   Abstract »    Full Text »    PDF »
The PP6 Phosphatase Regulates ABI5 Phosphorylation and Abscisic Acid Signaling in Arabidopsis.
M. Dai, Q. Xue, T. Mccray, K. Margavage, F. Chen, J.-H. Lee, C. D. Nezames, L. Guo, W. Terzaghi, J. Wan, et al. (2013)
PLANT CELL 25, 517-534
   Abstract »    Full Text »    PDF »
PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root.
R. Antoni, M. Gonzalez-Guzman, L. Rodriguez, M. Peirats-Llobet, G. A. Pizzio, M. A. Fernandez, N. De Winne, G. De Jaeger, D. Dietrich, M. J. Bennett, et al. (2013)
Plant Physiology 161, 931-941
   Abstract »    Full Text »    PDF »
Unique Drought Resistance Functions of the Highly ABA-Induced Clade A Protein Phosphatase 2Cs.
G. B. Bhaskara, T. T. Nguyen, and P. E. Verslues (2012)
Plant Physiology 160, 379-395
   Abstract »    Full Text »    PDF »
Controlling Hormone Action by Subversion and Deception.
J. Leung (2012)
Science 335, 46-47
   Abstract »    Full Text »    PDF »
Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases.
L.-M. Ng, F.-F. Soon, X. E. Zhou, G. M. West, A. Kovach, K. M. Suino-Powell, M. J. Chalmers, J. Li, E.-L. Yong, J.-K. Zhu, et al. (2011)
PNAS 108, 21259-21264
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882