Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 335 (6066): 348-353

Copyright © 2012 by the American Association for the Advancement of Science

A SUMOylation-Dependent Transcriptional Subprogram Is Required for Myc-Driven Tumorigenesis

Jessica D. Kessler,1,2 Kristopher T. Kahle,3,4 Tingting Sun,1 Kristen L. Meerbrey,1,2 Michael R. Schlabach,3 Earlene M. Schmitt,1,2 Samuel O. Skinner,1,5 Qikai Xu,3 Mamie Z. Li,3 Zachary C. Hartman,6 Mitchell Rao,2 Peng Yu,2 Rocio Dominguez-Vidana,1,2 Anthony C. Liang,3 Nicole L. Solimini,3 Ronald J. Bernardi,7 Bing Yu,8 Tiffany Hsu,1,2 Ido Golding,1,5 Ji Luo,8 C. Kent Osborne,9,10,11,12 Chad J. Creighton,9,13 Susan G. Hilsenbeck,9,10,13 Rachel Schiff,9,10,11,12 Chad A. Shaw,2 Stephen J. Elledge,3,* Thomas F. Westbrook1,2,7,9,*

Abstract: Myc is an oncogenic transcription factor frequently dysregulated in human cancer. To identify pathways supporting the Myc oncogenic program, we used a genome-wide RNA interference screen to search for Myc–synthetic lethal genes and uncovered a role for the SUMO-activating enzyme (SAE1/2). Loss of SAE1/2 enzymatic activity drives synthetic lethality with Myc. Inactivation of SAE2 leads to mitotic catastrophe and cell death upon Myc hyperactivation. Mechanistically, SAE2 inhibition switches a transcriptional subprogram of Myc from activated to repressed. A subset of these SUMOylation-dependent Myc switchers (SMS genes) is required for mitotic spindle function and to support the Myc oncogenic program. SAE2 is required for growth of Myc-dependent tumors in mice, and gene expression analyses of Myc-high human breast cancers suggest that low SAE1 and SAE2 abundance in the tumors correlates with longer metastasis-free survival of the patients. Thus, inhibition of SUMOylation may merit investigation as a possible therapy for Myc-driven human cancers.

1 Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
3 Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA.
4 Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02115, USA.
5 Department of Physics, University of Illinois, Urbana, IL 61801, USA.
6 Department of Clinical Cancer Prevention, M.D. Anderson Cancer Center, Houston, TX 77030, USA.
7 Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
8 Medical Oncology Branch, National Cancer Institute, Center Drive, Bethesda, MD 20892, USA.
9 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
10 The Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.
11 Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
12 Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
13 Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA.

* To whom correspondence should be addressed. E-mail: thomasw{at}bcm.edu (T.F.W.); selledge{at}genetics.med.harvard.edu (S.J.E.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Synthetic Lethal Screens as a Means to Understand and Treat MYC-Driven Cancers.
S. Cermelli, I. S. Jang, B. Bernard, and C. Grandori (2014)
Cold Spring Harb Perspect Med 4, a014209
   Abstract »    Full Text »    PDF »
Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers.
G. R. Hoffman, R. Rahal, F. Buxton, K. Xiang, G. McAllister, E. Frias, L. Bagdasarian, J. Huber, A. Lindeman, D. Chen, et al. (2014)
PNAS 111, 3128-3133
   Abstract »    Full Text »    PDF »
RNAi-Mediated Silencing of Myc Transcription Inhibits Stem-like Cell Maintenance and Tumorigenicity in Prostate Cancer.
G. Civenni, A. Malek, D. Albino, R. Garcia-Escudero, S. Napoli, S. Di Marco, S. Pinton, M. Sarti, G. M. Carbone, and C. V. Catapano (2013)
Cancer Res. 73, 6816-6827
   Abstract »    Full Text »    PDF »
Molecular Pathways: Targeting MYC-induced Metabolic Reprogramming and Oncogenic Stress in Cancer.
B. Li and M. C. Simon (2013)
Clin. Cancer Res. 19, 5835-5841
   Abstract »    Full Text »    PDF »
PIASy mediates hypoxia-induced SIRT1 transcriptional repression and epithelial-to-mesenchymal transition in ovarian cancer cells.
L. Sun, H. Li, J. Chen, Y. Iwasaki, T. Kubota, M. Matsuoka, A. Shen, Q. Chen, and Y. Xu (2013)
J. Cell Sci. 126, 3939-3947
   Abstract »    Full Text »    PDF »
Functional genomic screen of human stem cell differentiation reveals pathways involved in neurodevelopment and neurodegeneration.
Y. Zhang, V. P. Schulz, B. D. Reed, Z. Wang, X. Pan, J. Mariani, G. Euskirchen, M. P. Snyder, F. M. Vaccarino, N. Ivanova, et al. (2013)
PNAS 110, 12361-12366
   Abstract »    Full Text »    PDF »
SENP1 deSUMOylates and Regulates Pin1 Protein Activity and Cellular Function.
C.-H. Chen, C.-C. Chang, T. H. Lee, M. Luo, P. Huang, P.-H. Liao, S. Wei, F.-A. Li, R.-H. Chen, X. Z. Zhou, et al. (2013)
Cancer Res. 73, 3951-3962
   Abstract »    Full Text »    PDF »
A New Targeted Approach to Cancer Therapy.
Anthony L. Komaroff, MD and Anthony L. Komaroff, MD (2013)
Journal Watch 2012, JW201202230000003
   Full Text »
Global analysis of SUMO chain function reveals multiple roles in chromatin regulation.
T. Srikumar, M. C. Lewicki, M. Costanzo, J. M. Tkach, H. van Bakel, K. Tsui, E. S. Johnson, G. W. Brown, B. J. Andrews, C. Boone, et al. (2013)
J. Cell Biol. 201, 145-163
   Abstract »    Full Text »    PDF »
Quantitative Proteomics Reveals Factors Regulating RNA Biology as Dynamic Targets of Stress-induced SUMOylation in Arabidopsis.
M. J. Miller, M. Scalf, T. C. Rytz, S. L. Hubler, L. M. Smith, and R. D. Vierstra (2013)
Mol. Cell. Proteomics 12, 449-463
   Abstract »    Full Text »    PDF »
Oxidants, antioxidants and the current incurability of metastatic cancers.
J. Watson (2013)
Open Bio 3, 120144
   Abstract »    Full Text »    PDF »
A framework for identification of actionable cancer genome dependencies in small cell lung cancer.
M. L. Sos, F. Dietlein, M. Peifer, J. Schottle, H. Balke-Want, C. Muller, M. Koker, A. Richters, S. Heynck, F. Malchers, et al. (2012)
PNAS 109, 17034-17039
   Abstract »    Full Text »    PDF »
A Comparative and Integrative Approach Identifies ATPase Family, AAA Domain Containing 2 as a Likely Driver of Cell Proliferation in Lung Adenocarcinoma.
R. Fouret, J. Laffaire, P. Hofman, M. Beau-Faller, J. Mazieres, P. Validire, P. Girard, S. Camilleri-Broet, F. Vaylet, F. Leroy-Ladurie, et al. (2012)
Clin. Cancer Res. 18, 5606-5616
   Abstract »    Full Text »    PDF »
Glucocorticoid Receptor Activation Inhibits p53-induced Apoptosis of MCF10Amyc Cells via Induction of Protein Kinase C{epsilon}.
M. H. Aziz, H. Shen, and C. G. Maki (2012)
J. Biol. Chem. 287, 29825-29836
   Abstract »    Full Text »    PDF »
Functional genomics identifies therapeutic targets for MYC-driven cancer.
M. Toyoshima, H. L. Howie, M. Imakura, R. M. Walsh, J. E. Annis, A. N. Chang, J. Frazier, B. N. Chau, A. Loboda, P. S. Linsley, et al. (2012)
PNAS 109, 9545-9550
   Abstract »    Full Text »    PDF »
A New Targeted Approach to Cancer Therapy.
(2012)
Journal Watch (General) 2012, 3
   Full Text »
Taking a Back Door to Target Myc.
G. Evan (2012)
Science 335, 293-294
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882