Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 335 (6069): 712-716

Copyright © 2012 by the American Association for the Advancement of Science

Structure and Allostery of the PKA RIIβ Tetrameric Holoenzyme

Ping Zhang,1 Eric V. Smith-Nguyen,2 Malik M. Keshwani,1,3 Michael S. Deal,2 Alexandr P. Kornev,2,3 Susan S. Taylor1,2,3,*

Abstract: In its physiological state, cyclic adenosine monophosphate (cAMP)–dependent protein kinase (PKA) is a tetramer that contains a regulatory (R) subunit dimer and two catalytic (C) subunits. We describe here the 2.3 angstrom structure of full-length tetrameric RIIβ2:C2 holoenzyme. This structure showing a dimer of dimers provides a mechanistic understanding of allosteric activation by cAMP. The heterodimers are anchored together by an interface created by the β4-β5 loop in the RIIβ subunit, which docks onto the carboxyl-terminal tail of the adjacent C subunit, thereby forcing the C subunit into a fully closed conformation in the absence of nucleotide. Diffusion of magnesium adenosine triphosphate (ATP) into these crystals trapped not ATP, but the reaction products, adenosine diphosphate and the phosphorylated RIIβ subunit. This complex has implications for the dissociation-reassociation cycling of PKA. The quaternary structure of the RIIβ tetramer differs appreciably from our model of the RIα tetramer, confirming the small-angle x-ray scattering prediction that the structures of each PKA tetramer are different.

1 Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093–0654, USA.
2 Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093–0654, USA.
3 Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093–0654, USA.

* To whom correspondence should be addressed. E-mail: staylor{at}

Pain modulators regulate the dynamics of PKA-RII phosphorylation in subgroups of sensory neurons.
J. Isensee, M. Diskar, S. Waldherr, R. Buschow, J. Hasenauer, A. Prinz, F. Allgower, F. W. Herberg, and T. Hucho (2014)
J. Cell Sci. 127, 216-229
   Abstract »    Full Text »    PDF »
Local cAMP signaling in disease at a glance.
M. G. Gold, T. Gonen, and J. D. Scott (2013)
J. Cell Sci. 126, 4537-4543
   Abstract »    Full Text »    PDF »
Reciprocal regulation of PKA and Rac signaling.
V. A. Bachmann, A. Riml, R. G. Huber, G. S. Baillie, K. R. Liedl, T. Valovka, and E. Stefan (2013)
PNAS 110, 8531-8536
   Abstract »    Full Text »    PDF »
Activation of Both Protein Kinase A (PKA) Type I and PKA Type II Isozymes Is Required for Retinoid-Induced Maturation of Acute Promyelocytic Leukemia Cells.
E. Nguyen, G. Gausdal, J. Varennes, F. Pendino, M. Lanotte, S. O. Doskeland, and E. Segal-Bendirdjian (2013)
Mol. Pharmacol. 83, 1057-1065
   Abstract »    Full Text »    PDF »
Evolution of the eukaryotic protein kinases as dynamic molecular switches.
S. S. Taylor, M. M. Keshwani, J. M. Steichen, and A. P. Kornev (2012)
Phil Trans R Soc B 367, 2517-2528
   Abstract »    Full Text »    PDF »
Localization and quaternary structure of the PKA RI{beta} holoenzyme.
R. Ilouz, J. Bubis, J. Wu, Y. Y. Yim, M. S. Deal, A. P. Kornev, Y. Ma, D. K. Blumenthal, and S. S. Taylor (2012)
PNAS 109, 12443-12448
   Abstract »    Full Text »    PDF »
The Structure of the Full-Length Tetrameric PKA Regulatory RII{beta} Complex Reveals the Mechanism of Allosteric PKA Activation.
J. M. Elkins and S. Knapp (2012)
Science Signaling 5, pe21
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882