Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 335 (6074): 1348-1351

Copyright © 2012 by the American Association for the Advancement of Science

The Path from β-Carotene to Carlactone, a Strigolactone-Like Plant Hormone

Adrian Alder,1 Muhammad Jamil,2 Mattia Marzorati,3 Mark Bruno,1 Martina Vermathen,3 Peter Bigler,3 Sandro Ghisla,4 Harro Bouwmeester,2,5 Peter Beyer,1,6 Salim Al-Babili1,6,*

Abstract: Strigolactones, phytohormones with diverse signaling activities, have a common structure consisting of two lactones connected by an enol-ether bridge. Strigolactones derive from carotenoids via a pathway involving the carotenoid cleavage dioxygenases 7 and 8 (CCD7 and CCD8) and the iron-binding protein D27. We show that D27 is a β-carotene isomerase that converts all-trans-β-carotene into 9-cis-β-carotene, which is cleaved by CCD7 into a 9-cis–configured aldehyde. CCD8 incorporates three oxygens into 9-cis-β-apo-10'-carotenal and performs molecular rearrangement, linking carotenoids with strigolactones and producing carlactone, a compound with strigolactone-like biological activities. Knowledge of the structure of carlactone will be crucial for understanding the biology of strigolactones and may have applications in combating parasitic weeds.

1 Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
2 Laboratory of Plant Physiology, Wageningen University, 6700 AR Wageningen, Netherlands.
3 Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
4 Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
5 Centre for Biosystems Genomics, 6700 AR Wageningen, Netherlands.
6 Centre for Biological Signalling Studies (Bioss), 79104 Freiburg, Germany.

* To whom correspondence should be addressed. E-mail: salim.albabili{at}biologie.uni-freiburg.de


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
DWARF3 Participates in an SCF Complex and Associates with DWARF14 to Suppress Rice Shoot Branching.
J. Zhao, T. Wang, M. Wang, Y. Liu, S. Yuan, Y. Gao, L. Yin, W. Sun, L. Peng, W. Zhang, et al. (2014)
Plant Cell Physiol.
   Abstract »    Full Text »    PDF »
New Strigolactone Analogs as Plant Hormones with Low Activities in the Rhizosphere.
F.-D. Boyer, A. de Saint Germain, J.-B. Pouvreau, G. Clave, J.-P. Pillot, A. Roux, A. Rasmussen, S. Depuydt, D. Lauressergues, N. Frei dit Frey, et al. (2014)
Mol Plant 7, 675-690
   Abstract »    Full Text »    PDF »
Periodic root branching in Arabidopsis requires synthesis of an uncharacterized carotenoid derivative.
J. M. Van Norman, J. Zhang, C. I. Cazzonelli, B. J. Pogson, P. J. Harrison, T. D. H. Bugg, K. X. Chan, A. J. Thompson, and P. N. Benfey (2014)
PNAS 111, E1300-E1309
   Abstract »    Full Text »    PDF »
Photo-oxidative stress markers as a measure of abiotic stress-induced leaf senescence: advantages and limitations.
M. Pinto-Marijuan and S. Munne-Bosch (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs.
C. Cardoso, Y. Zhang, M. Jamil, J. Hepworth, T. Charnikhova, S. O. N. Dimkpa, C. Meharg, M. H. Wright, J. Liu, X. Meng, et al. (2014)
PNAS 111, 2379-2384
   Abstract »    Full Text »    PDF »
Carlactone is an endogenous biosynthetic precursor for strigolactones.
Y. Seto, A. Sado, K. Asami, A. Hanada, M. Umehara, K. Akiyama, and S. Yamaguchi (2014)
PNAS 111, 1640-1645
   Abstract »    Full Text »    PDF »
Positive regulatory role of strigolactone in plant responses to drought and salt stress.
C. V. Ha, M. A. Leyva-Gonzalez, Y. Osakabe, U. T. Tran, R. Nishiyama, Y. Watanabe, M. Tanaka, M. Seki, S. Yamaguchi, N. V. Dong, et al. (2014)
PNAS 111, 851-856
   Abstract »    Full Text »    PDF »
Strigolactone and Cytokinin Act Antagonistically in Regulating Rice Mesocotyl Elongation in Darkness.
Z. Hu, T. Yamauchi, J. Yang, Y. Jikumaru, T. Tsuchida-Mayama, H. Ichikawa, I. Takamure, Y. Nagamura, N. Tsutsumi, S. Yamaguchi, et al. (2014)
Plant Cell Physiol. 55, 30-41
   Abstract »    Full Text »    PDF »
Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years.
J. Zuo and J. Li (2013)
Natl Sci Rev
   Abstract »    Full Text »    PDF »
CAROTENOID CLEAVAGE DIOXYGENASE4 Is a Negative Regulator of {beta}-Carotene Content in Arabidopsis Seeds.
S. Gonzalez-Jorge, S.-H. Ha, M. Magallanes-Lundback, L. U. Gilliland, A. Zhou, A. E. Lipka, Y.-N. Nguyen, R. Angelovici, H. Lin, J. Cepela, et al. (2013)
PLANT CELL 25, 4812-4826
   Abstract »    Full Text »    PDF »
THIS1 is a putative lipase that regulates tillering, plant height, and spikelet fertility in rice.
W. Liu, D. Zhang, M. Tang, D. Li, Y. Zhu, L. Zhu, and C. Chen (2013)
J. Exp. Bot. 64, 4389-4402
   Abstract »    Full Text »    PDF »
A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments.
M. J. Rodrigo, B. Alquezar, E. Alos, V. Medina, L. Carmona, M. Bruno, S. Al-Babili, and L. Zacarias (2013)
J. Exp. Bot. 64, 4461-4478
   Abstract »    Full Text »    PDF »
Enzymatic Formation of {beta}-Citraurin from {beta}-Cryptoxanthin and Zeaxanthin by Carotenoid Cleavage Dioxygenase4 in the Flavedo of Citrus Fruit.
G. Ma, L. Zhang, A. Matsuta, K. Matsutani, K. Yamawaki, M. Yahata, A. Wahyudi, R. Motohashi, and M. Kato (2013)
Plant Physiology 163, 682-695
   Abstract »    Full Text »    PDF »
Dissection of Tomato Lycopene Biosynthesis through Virus-Induced Gene Silencing.
E. Fantini, G. Falcone, S. Frusciante, L. Giliberto, and G. Giuliano (2013)
Plant Physiology 163, 986-998
   Abstract »    Full Text »    PDF »
Strigolactones Stimulate Internode Elongation Independently of Gibberellins.
A. de Saint Germain, Y. Ligerot, E. A. Dun, J.-P. Pillot, J. J. Ross, C. A. Beveridge, and C. Rameau (2013)
Plant Physiology 163, 1012-1025
   Abstract »    Full Text »    PDF »
The Oxygenase CAO-1 of Neurospora crassa Is a Resveratrol Cleavage Enzyme.
V. Diaz-Sanchez, A. F. Estrada, M. C. Limon, S. Al-Babili, and J. Avalos (2013)
Eukaryot. Cell 12, 1305-1314
   Abstract »    Full Text »    PDF »
SUPPRESSOR OF MORE AXILLARY GROWTH2 1 Controls Seed Germination and Seedling Development in Arabidopsis.
J. P. Stanga, S. M. Smith, W. R. Briggs, and D. C. Nelson (2013)
Plant Physiology 163, 318-330
   Abstract »    Full Text »    PDF »
Strigolactones activate different hormonal pathways for regulation of root development in response to phosphate growth conditions.
H. Koltai (2013)
Ann. Bot. 112, 409-415
   Abstract »    Full Text »    PDF »
New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids.
J. Heo, S. H. Kim, and P. C. Lee (2013)
Appl. Envir. Microbiol. 79, 3336-3345
   Abstract »    Full Text »    PDF »
CAROTENOID CLEAVAGE DIOXYGENASE 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus.
J. Liu, M. Novero, T. Charnikhova, A. Ferrandino, A. Schubert, C. Ruyter-Spira, P. Bonfante, C. Lovisolo, H. J. Bouwmeester, and F. Cardinale (2013)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
A Role for MORE AXILLARY GROWTH1 (MAX1) in Evolutionary Diversity in Strigolactone Signaling Upstream of MAX2.
R. J. Challis, J. Hepworth, C. Mouchel, R. Waites, and O. Leyser (2013)
Plant Physiology 161, 1885-1902
   Abstract »    Full Text »    PDF »
Diverse Roles of Strigolactones in Plant Development.
P. B. Brewer, H. Koltai, and C. A. Beveridge (2013)
Mol Plant 6, 18-28
   Abstract »    Full Text »    PDF »
Selective Mimics of Strigolactone Actions and Their Potential Use for Controlling Damage Caused by Root Parasitic Weeds.
K. Fukui, S. Ito, and T. Asami (2013)
Mol Plant 6, 88-99
   Abstract »    Full Text »    PDF »
Structure and Activity of Strigolactones: New Plant Hormones with a Rich Future.
B. Zwanenburg and T. Pospisil (2013)
Mol Plant 6, 38-62
   Abstract »    Full Text »    PDF »
Strigolactone Analogs as Molecular Probes in Chasing the (SLs) Receptor/s: Design and Synthesis of Fluorescent Labeled Molecules.
C. Prandi, H. Rosso, B. Lace, E. G. Occhiato, A. Oppedisano, S. Tabasso, G. Alberto, and M. Blangetti (2013)
Mol Plant 6, 113-127
   Abstract »    Full Text »    PDF »
Dynamics of Strigolactone Function and Shoot Branching Responses in Pisum sativum.
E. A. Dun, A. de Saint Germain, C. Rameau, and C. A. Beveridge (2013)
Mol Plant 6, 128-140
   Abstract »    Full Text »    PDF »
Plant & Cell Physiology Research Highlights.
L. M. Costa (2012)
Plant Cell Physiol. 53, 1985-1988
   Full Text »    PDF »
A Nitrogen-Regulated Glutamine Amidotransferase (GAT1_2.1) Represses Shoot Branching in Arabidopsis.
H. Zhu and R. G. Kranz (2012)
Plant Physiology 160, 1770-1780
   Abstract »    Full Text »    PDF »
Recent Advances in Strigolactone Research: Chemical and Biological Aspects.
Y. Seto, H. Kameoka, S. Yamaguchi, and J. Kyozuka (2012)
Plant Cell Physiol. 53, 1843-1853
   Abstract »    Full Text »    PDF »
Diverse Roles of Strigolactone Signaling in Maize Architecture and the Uncoupling of a Branching-Specific Subnetwork.
J. C. Guan, K. E. Koch, M. Suzuki, S. Wu, S. Latshaw, T. Petruff, C. Goulet, H. J. Klee, and D. R. McCarty (2012)
Plant Physiology 160, 1303-1317
   Abstract »    Full Text »    PDF »
New Insights into Plant Isoprenoid Metabolism.
P. Pulido, C. Perello, and M. Rodriguez-Concepcion (2012)
Mol Plant 5, 964-967
   Full Text »    PDF »
Structure-Activity Relationship Studies of Strigolactone-Related Molecules for Branching Inhibition in Garden Pea: Molecule Design for Shoot Branching.
F.-D. Boyer, A. de Saint Germain, J.-P. Pillot, J.-B. Pouvreau, V. X. Chen, S. Ramos, A. Stevenin, P. Simier, P. Delavault, J.-M. Beau, et al. (2012)
Plant Physiology 159, 1524-1544
   Abstract »    Full Text »    PDF »
The Arabidopsis Ortholog of Rice DWARF27 Acts Upstream of MAX1 in the Control of Plant Development by Strigolactones.
M. T. Waters, P. B. Brewer, J. D. Bussell, S. M. Smith, and C. A. Beveridge (2012)
Plant Physiology 159, 1073-1085
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882