Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 335 (6075): 1492-1496

Copyright © 2012 by the American Association for the Advancement of Science

Plant UVR8 Photoreceptor Senses UV-B by Tryptophan-Mediated Disruption of Cross-Dimer Salt Bridges

John M. Christie,1,2 Andrew S. Arvai,2 Katherine J. Baxter,1,* Monika Heilmann,1,* Ashley J. Pratt,2 Andrew O’Hara,1 Sharon M. Kelly,1 Michael Hothorn,3,{dagger} Brian O. Smith,1 Kenichi Hitomi,2,4,5 Gareth I. Jenkins,1,{ddagger} Elizabeth D. Getzoff2,{ddagger}

Abstract: The recently identified plant photoreceptor UVR8 (UV RESISTANCE LOCUS 8) triggers regulatory changes in gene expression in response to ultraviolet-B (UV-B) light through an unknown mechanism. Here, crystallographic and solution structures of the UVR8 homodimer, together with mutagenesis and far-UV circular dichroism spectroscopy, reveal its mechanisms for UV-B perception and signal transduction. β-propeller subunits form a remarkable, tryptophan-dominated, dimer interface stitched together by a complex salt-bridge network. Salt-bridging arginines flank the excitonically coupled cross-dimer tryptophan "pyramid" responsible for UV-B sensing. Photoreception reversibly disrupts salt bridges, triggering dimer dissociation and signal initiation. Mutation of a single tryptophan to phenylalanine retunes the photoreceptor to detect UV-C wavelengths. Our analyses establish how UVR8 functions as a photoreceptor without a prosthetic chromophore to promote plant development and survival in sunlight.

1 Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK.
2 Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
3 Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
4 Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
5 Section of Laboratory Equipment, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.

* These authors contributed equally to this work.

{dagger} Present address: Structural Plant Biology Laboratory, Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, Germany.

{ddagger} In whose labs this research was jointly undertaken and to whom correspondence should be addressed. E-mail: gareth.jenkins{at}glasgow.ac.uk (G.I.J.); edg{at}scripps.edu (E.D.G.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
On the mechanism of photoinduced dimer dissociation in the plant UVR8 photoreceptor.
A. A. Voityuk, R. A. Marcus, and M.-E. Michel-Beyerle (2014)
PNAS 111, 5219-5224
   Abstract »    Full Text »    PDF »
Ultraviolet-B-Induced Stomatal Closure in Arabidopsis Is Regulated by the UV RESISTANCE LOCUS8 Photoreceptor in a Nitric Oxide-Dependent Mechanism.
V. Tossi, L. Lamattina, G. I. Jenkins, and R. O. Cassia (2014)
Plant Physiology 164, 2220-2230
   Abstract »    Full Text »    PDF »
UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation.
J. J. Biever, D. Brinkman, and G. Gardner (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Role of Arabidopsis UV RESISTANCE LOCUS 8 in Plant Growth Reduction under Osmotic Stress and Low Levels of UV-B.
R. Fasano, N. Gonzalez, A. Tosco, F. Dal Piaz, T. Docimo, R. Serrano, S. Grillo, A. Leone, and D. Inze (2014)
Mol Plant
   Abstract »    Full Text »    PDF »
The impact of chromatin dynamics on plant light responses and circadian clock function.
F. Barneche, J. Malapeira, and P. Mas (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
The UV-B Photoreceptor UVR8: From Structure to Physiology.
G. I. Jenkins (2014)
PLANT CELL 26, 21-37
   Abstract »    Full Text »    PDF »
Constitutively active UVR8 photoreceptor variant in Arabidopsis.
M. Heijde, M. Binkert, R. Yin, F. Ares-Orpel, L. Rizzini, E. Van De Slijke, G. Persiau, J. Nolf, K. Gevaert, G. De Jaeger, et al. (2013)
PNAS 110, 20326-20331
   Abstract »    Full Text »    PDF »
Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B.
X. Huang, X. Ouyang, P. Yang, O. S. Lau, L. Chen, N. Wei, and X. W. Deng (2013)
PNAS 110, 16669-16674
   Abstract »    Full Text »    PDF »
Multi-chromatic control of mammalian gene expression and signaling.
K. Muller, R. Engesser, S. Schulz, T. Steinberg, P. Tomakidi, C. C. Weber, R. Ulm, J. Timmer, M. D. Zurbriggen, and W. Weber (2013)
Nucleic Acids Res. 41, e124
   Abstract »    Full Text »    PDF »
Interactions of photosynthesis with genome size and function.
J. A. Raven, J. Beardall, A. W. D. Larkum, and P. Sanchez-Baracaldo (2013)
Phil Trans R Soc B 368, 20120264
   Abstract »    Full Text »    PDF »
A light-triggered protein secretion system.
D. Chen, E. S. Gibson, and M. J. Kennedy (2013)
J. Cell Biol. 201, 631-640
   Abstract »    Full Text »    PDF »
Role and Interrelationship of G{alpha} Protein, Hydrogen Peroxide, and Nitric Oxide in Ultraviolet B-Induced Stomatal Closure in Arabidopsis Leaves.
J.-M. He, X.-G. Ma, Y. Zhang, T.-F. Sun, F.-F. Xu, Y.-P. Chen, X. Liu, and M. Yue (2013)
Plant Physiology 161, 1570-1583
   Abstract »    Full Text »    PDF »
Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation.
L. O. Morales, M. Brosche, J. Vainonen, G. I. Jenkins, J. J. Wargent, N. Sipari, A. Strid, A. V. Lindfors, R. Tegelberg, and P. J. Aphalo (2013)
Plant Physiology 161, 744-759
   Abstract »    Full Text »    PDF »
Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state.
M. Heijde and R. Ulm (2013)
PNAS 110, 1113-1118
   Abstract »    Full Text »    PDF »
Phototropism: Translating light into directional growth.
T. Hohm, T. Preuten, and C. Fankhauser (2013)
Am. J. Botany 100, 47-59
   Abstract »    Full Text »    PDF »
Rapid Reversion from Monomer to Dimer Regenerates the Ultraviolet-B Photoreceptor UV RESISTANCE LOCUS8 in Intact Arabidopsis Plants.
M. Heilmann and G. I. Jenkins (2013)
Plant Physiology 161, 547-555
   Abstract »    Full Text »    PDF »
A Photochromic Histidine Kinase Rhodopsin (HKR1) That Is Bimodally Switched by Ultraviolet and Blue Light.
M. Luck, T. Mathes, S. Bruun, R. Fudim, R. Hagedorn, T. M. Tran Nguyen, S. Kateriya, J. T. M. Kennis, P. Hildebrandt, and P. Hegemann (2012)
J. Biol. Chem. 287, 40083-40090
   Abstract »    Full Text »    PDF »
Arabidopsis FHY3 and HY5 Positively Mediate Induction of COP1 Transcription in Response to Photomorphogenic UV-B Light.
X. Huang, X. Ouyang, P. Yang, O. S. Lau, G. Li, J. Li, H. Chen, and X. W. Deng (2012)
PLANT CELL 24, 4590-4606
   Abstract »    Full Text »    PDF »
C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein.
C. Cloix, E. Kaiserli, M. Heilmann, K. J. Baxter, B. A. Brown, A. O'Hara, B. O. Smith, J. M. Christie, and G. I. Jenkins (2012)
PNAS 109, 16366-16370
   Abstract »    Full Text »    PDF »
MdCOP1 Ubiquitin E3 Ligases Interact with MdMYB1 to Regulate Light-Induced Anthocyanin Biosynthesis and Red Fruit Coloration in Apple.
Y.-Y. Li, K. Mao, C. Zhao, X.-Y. Zhao, H.-L. Zhang, H.-R. Shu, and Y.-J. Hao (2012)
Plant Physiology 160, 1011-1022
   Abstract »    Full Text »    PDF »
In Vivo Function of Tryptophans in the Arabidopsis UV-B Photoreceptor UVR8.
A. O'Hara and G. I. Jenkins (2012)
PLANT CELL 24, 3755-3766
   Abstract »    Full Text »    PDF »
Photomorphogenesis--from One Photoreceptor to 14: 40 Years of Progress.
W. R. Briggs and C.-T. Lin (2012)
Mol Plant 5, 531-532
   Full Text »    PDF »
How Plants See the Invisible.
K. H. Gardner and F. Correa (2012)
Science 335, 1451-1452
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882