Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 335 (6076): 1638-1643

Copyright © 2012 by the American Association for the Advancement of Science

Rapamycin-Induced Insulin Resistance Is Mediated by mTORC2 Loss and Uncoupled from Longevity

Dudley W. Lamming,1,2,3,4,5,{dagger} Lan Ye,6,{dagger} Pekka Katajisto,1,2,3,4,5 Marcus D. Goncalves,7 Maki Saitoh,1,2,3,4,5 Deanna M. Stevens,1,2,3,4,5 James G. Davis,6 Adam B. Salmon,8 Arlan Richardson,8 Rexford S. Ahima,7 David A. Guertin,1,2,3,4,5,* David M. Sabatini,1,2,3,4,5,{ddagger} Joseph A. Baur6,{ddagger}

Abstract: Rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1), extends the life spans of yeast, flies, and mice. Calorie restriction, which increases life span and insulin sensitivity, is proposed to function by inhibition of mTORC1, yet paradoxically, chronic administration of rapamycin substantially impairs glucose tolerance and insulin action. We demonstrate that rapamycin disrupted a second mTOR complex, mTORC2, in vivo and that mTORC2 was required for the insulin-mediated suppression of hepatic gluconeogenesis. Further, decreased mTORC1 signaling was sufficient to extend life span independently from changes in glucose homeostasis, as female mice heterozygous for both mTOR and mLST8 exhibited decreased mTORC1 activity and extended life span but had normal glucose tolerance and insulin sensitivity. Thus, mTORC2 disruption is an important mediator of the effects of rapamycin in vivo.

1 Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
2 Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
3 Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA.
4 Broad Institute of Harvard and MIT, Seven Cambridge Center, Cambridge, MA 02142, USA.
5 The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA.
6 Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
7 Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
8 The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA.

* Present address: University of Massachusetts Medical School, Worcester, MA 01655, USA.

{dagger} These authors contributed equally to this work

{ddagger} To whom correspondence should be addressed. E-mail: baur{at} (J.A.B.); sabatini{at} (D.M.S.)

Denervation atrophy is independent from Akt and mTOR activation and is not rescued by myostatin inhibition.
E. M. MacDonald, E. Andres-Mateos, R. Mejias, J. L. Simmers, R. Mi, J.-S. Park, S. Ying, A. Hoke, S.-J. Lee, and R. D. Cohn (2014)
Dis. Model. Mech. 7, 471-481
   Abstract »    Full Text »    PDF »
Isp7 Is a Novel Regulator of Amino Acid Uptake in the TOR Signaling Pathway.
D. Laor, A. Cohen, M. Pasmanik-Chor, V. Oron-Karni, M. Kupiec, and R. Weisman (2014)
Mol. Cell. Biol. 34, 794-806
   Abstract »    Full Text »    PDF »
Epidermal Growth Factor Receptor Signaling Promotes Pancreatic {beta}-Cell Proliferation in Response to Nutrient Excess in Rats Through mTOR and FOXM1.
B. Zarrouki, I. Benterki, G. Fontes, M.-L. Peyot, O. Seda, M. Prentki, and V. Poitout (2014)
Diabetes 63, 982-993
   Abstract »    Full Text »    PDF »
Mammalian Target of Rapamycin (mTOR) Inhibition with Rapamycin Improves Cardiac Function in Type 2 Diabetic Mice: POTENTIAL ROLE OF ATTENUATED OXIDATIVE STRESS AND ALTERED CONTRACTILE PROTEIN EXPRESSION.
A. Das, D. Durrant, S. Koka, F. N. Salloum, L. Xi, and R. C. Kukreja (2014)
J. Biol. Chem. 289, 4145-4160
   Abstract »    Full Text »    PDF »
Rapamycin drives selection against a pathogenic heteroplasmic mitochondrial DNA mutation.
Y. Dai, K. Zheng, J. Clark, R. H. Swerdlow, S. M. Pulst, J. P. Sutton, L. A. Shinobu, and D. K. Simon (2014)
Hum. Mol. Genet. 23, 637-647
   Abstract »    Full Text »    PDF »
Everolimus Dramatically Improves Glycemic Control in Unresectable Metastatic Insulinoma: A Case Report.
M. Asayama, T. Yamada-Murano, H. Hara, A. Ooki, M. Kurosumi, and K. Yamaguchi (2014)
Jpn. J. Clin. Oncol. 44, 186-190
   Abstract »    Full Text »    PDF »
ENDOCRINE SIDE EFFECTS OF ANTI-CANCER DRUGS: Effects of anti-cancer targeted therapies on lipid and glucose metabolism.
B. Verges, T. Walter, and B. Cariou (2014)
Eur. J. Endocrinol. 170, R43-R55
   Abstract »    Full Text »    PDF »
mTOR controls kidney epithelia in health and disease.
F. Grahammer, N. Wanner, and T. B. Huber (2014)
Nephrol. Dial. Transplant. 29, i9-i18
   Abstract »    Full Text »    PDF »
Mammalian Target of Rapamycin Signaling in Cardiac Physiology and Disease.
S. Sciarretta, M. Volpe, and J. Sadoshima (2014)
Circ. Res. 114, 549-564
   Abstract »    Full Text »    PDF »
From TOR and SMAD, why HIF-1{alpha} can be bad.
D. Sheikh-Hamad (2014)
Am J Physiol Renal Physiol 306, F170-F171
   Full Text »    PDF »
Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2).
D. W. Lamming, G. Demirkan, J. M. Boylan, M. M. Mihaylova, T. Peng, J. Ferreira, N. Neretti, A. Salomon, D. M. Sabatini, and P. A. Gruppuso (2014)
FASEB J 28, 300-315
   Abstract »    Full Text »    PDF »
eRapa Restores a Normal Life Span in a FAP Mouse Model.
P. Hasty, C. B. Livi, S. G. Dodds, D. Jones, R. Strong, M. Javors, K. E. Fischer, L. Sloane, K. Murthy, G. Hubbard, et al. (2014)
Cancer Prevention Research 7, 169-178
   Abstract »    Full Text »    PDF »
Assessment of Mitochondrial Biogenesis and mTORC1 Signaling During Chronic Rapamycin Feeding in Male and Female Mice.
J. C. Drake, F. F. Peelor III, L. M. Biela, M. K. Watkins, R. A. Miller, K. L. Hamilton, and B. F. Miller (2013)
J Gerontol A Biol Sci Med Sci 68, 1493-1501
   Abstract »    Full Text »    PDF »
Post-prandial regulation of hepatic glucokinase and lipogenesis requires the activation of TORC1 signalling in rainbow trout (Oncorhynchus mykiss).
W. Dai, S. Panserat, J. A. Mennigen, F. Terrier, K. Dias, I. Seiliez, and S. Skiba-Cassy (2013)
J. Exp. Biol. 216, 4483-4492
   Abstract »    Full Text »    PDF »
Increased Mammalian Target of Rapamycin Complex 2 Signaling Promotes Age-Related Decline in CD4 T Cell Signaling and Function.
E. Perkey, D. Fingar, R. A. Miller, and G. G. Garcia (2013)
J. Immunol. 191, 4648-4655
   Abstract »    Full Text »    PDF »
Limitations of IL-2 and Rapamycin in Immunotherapy of Type 1 Diabetes.
A. Baeyens, L. Perol, G. Fourcade, N. Cagnard, W. Carpentier, J. Woytschak, O. Boyman, A. Hartemann, and E. Piaggio (2013)
Diabetes 62, 3120-3131
   Abstract »    Full Text »    PDF »
A non-canonical role for the C. elegans dosage compensation complex in growth and metabolic regulation downstream of TOR complex 2.
C. M. Webster, L. Wu, D. Douglas, and A. A. Soukas (2013)
Development 140, 3601-3612
   Abstract »    Full Text »    PDF »
Mechanistic target of rapamycin controls homeostasis of adipogenesis.
M.-S. Yoon, C. Zhang, Y. Sun, C. J. Schoenherr, and J. Chen (2013)
J. Lipid Res. 54, 2166-2173
   Abstract »    Full Text »    PDF »
Evidence for Rapamycin Toxicity in Pancreatic {beta}-Cells and a Review of the Underlying Molecular Mechanisms.
A. D. Barlow, M. L. Nicholson, and T. P. Herbert (2013)
Diabetes 62, 2674-2682
   Abstract »    Full Text »    PDF »
MicroRNA 33 Regulates Glucose Metabolism.
C. M. Ramirez, L. Goedeke, N. Rotllan, J.-H. Yoon, D. Cirera-Salinas, J. A. Mattison, Y. Suarez, R. de Cabo, M. Gorospe, and C. Fernandez-Hernando (2013)
Mol. Cell. Biol. 33, 2891-2902
   Abstract »    Full Text »    PDF »
Tuberous sclerosis complex regulates Drosophila neuromuscular junction growth via the TORC2/Akt pathway.
R. Natarajan, D. Trivedi-Vyas, and Y. P. Wairkar (2013)
Hum. Mol. Genet. 22, 2010-2023
   Abstract »    Full Text »    PDF »
Targeting Purinergic Receptors in Islet Transplantation.
R. A. Aikin (2013)
Diabetes 62, 1394-1395
   Full Text »    PDF »
Treatment of Geographic Atrophy With Subconjunctival Sirolimus: Results of a Phase I/II Clinical Trial.
W. T. Wong, S. Dresner, F. Forooghian, T. Glaser, L. Doss, M. Zhou, D. Cunningham, K. Shimel, M. Harrington, K. Hammel, et al. (2013)
Invest. Ophthalmol. Vis. Sci. 54, 2941-2950
   Abstract »    Full Text »    PDF »
Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology.
V. Thomanetz, N. Angliker, D. Cloetta, R. M. Lustenberger, M. Schweighauser, F. Oliveri, N. Suzuki, and M. A. Ruegg (2013)
J. Cell Biol. 201, 293-308
   Abstract »    Full Text »    PDF »
Regulation of mTORC1 and its impact on gene expression at a glance.
M. Laplante and D. M. Sabatini (2013)
J. Cell Sci. 126, 1713-1719
   Full Text »    PDF »
Actin filament dynamics impacts keratinocyte stem cell maintenance.
D. Nanba, F. Toki, N. Matsushita, S. Matsushita, S. Higashiyama, and Y. Barrandon (2013)
EMBO Mol Med. 5, 640-653
   Abstract »    Full Text »    PDF »
Large FK506-Binding Proteins Shape the Pharmacology of Rapamycin.
A. M. Marz, A.-K. Fabian, C. Kozany, A. Bracher, and F. Hausch (2013)
Mol. Cell. Biol. 33, 1357-1367
   Abstract »    Full Text »    PDF »
Stimulation of Autophagy Improves Endoplasmic Reticulum Stress-Induced Diabetes.
E. Bachar-Wikstrom, J. D. Wikstrom, Y. Ariav, B. Tirosh, N. Kaiser, E. Cerasi, and G. Leibowitz (2013)
Diabetes 62, 1227-1237
   Abstract »    Full Text »    PDF »
The multifaceted role of mTORC1 in the control of lipid metabolism.
S. J. H. Ricoult and B. D. Manning (2013)
EMBO Rep. 14, 242-251
   Abstract »    Full Text »    PDF »
MicroRNA-7 Regulates the mTOR Pathway and Proliferation in Adult Pancreatic {beta}-Cells.
Y. Wang, J. Liu, C. Liu, A. Naji, and D. A. Stoffers (2013)
Diabetes 62, 887-895
   Abstract »    Full Text »    PDF »
The orphan receptor TR3 participates in angiotensin II-induced cardiac hypertrophy by controlling mTOR signalling.
R.-H. Wang, J.-P. He, M.-L. Su, J. Luo, M. Xu, X.-D. Du, H.-Z. Chen, W.-J. Wang, Y. Wang, N. Zhang, et al. (2013)
EMBO Mol Med. 5, 137-148
   Abstract »    Full Text »    PDF »
Mammalian Target of Rapamycin Signaling Is a Key Regulator of the Transit-Amplifying Progenitor Pool in the Adult and Aging Forebrain.
G. N. Paliouras, L. K. Hamilton, A. Aumont, S. E. Joppe, F. Barnabe-Heider, and K. J. L. Fernandes (2012)
J. Neurosci. 32, 15012-15026
   Abstract »    Full Text »    PDF »
The Combined Deletion of S6K1 and Akt2 Deteriorates Glycemic Control in a High-Fat Diet.
C. Treins, S. Alliouachene, R. Hassouna, Y. Xie, M. J. Birnbaum, and M. Pende (2012)
Mol. Cell. Biol. 32, 4001-4011
   Abstract »    Full Text »    PDF »
TORC2 and the AGC kinase Gad8 regulate phosphorylation of the ribosomal protein S6 in fission yeast.
W. Du, L. Halova, S. Kirkham, J. Atkin, and J. Petersen (2012)
Biology Open 1, 884-888
   Abstract »    Full Text »    PDF »
Investigating Metformin for Cancer Prevention and Treatment: The End of the Beginning.
M. N. Pollak (2012)
Cancer Discovery 2, 778-790
   Abstract »    Full Text »    PDF »
Dual Targeting of the Akt/mTOR Signaling Pathway Inhibits Castration-Resistant Prostate Cancer in a Genetically Engineered Mouse Model.
N. Floc'h, C. W. Kinkade, T. Kobayashi, A. Aytes, C. Lefebvre, A. Mitrofanova, R. D. Cardiff, A. Califano, M. M. Shen, and C. Abate-Shen (2012)
Cancer Res. 72, 4483-4493
   Abstract »    Full Text »    PDF »
Identification of Akt-independent Regulation of Hepatic Lipogenesis by Mammalian Target of Rapamycin (mTOR) Complex 2.
M. Yuan, E. Pino, L. Wu, M. Kacergis, and A. A. Soukas (2012)
J. Biol. Chem. 287, 29579-29588
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 3 April 2012.
D. M. Sabatini, J. A. Baur, and A. M. VanHook (2012)
Science Signaling 5, pc7
   Abstract »    Full Text »
Rapamycin Paradox Resolved.
K. J. Hughes and B. K. Kennedy (2012)
Science 335, 1578-1579
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882