Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 336 (6078): 229-233

Copyright © 2012 by the American Association for the Advancement of Science

Mechanism of Voltage Gating in Potassium Channels

Morten Ø. Jensen,1,* Vishwanath Jogini,1 David W. Borhani,1 Abba E. Leffler,1 Ron O. Dror,1 David E. Shaw1,2,*

Abstract: The mechanism of ion channel voltage gating—how channels open and close in response to voltage changes—has been debated since Hodgkin and Huxley’s seminal discovery that the crux of nerve conduction is ion flow across cellular membranes. Using all-atom molecular dynamics simulations, we show how a voltage-gated potassium channel (KV) switches between activated and deactivated states. On deactivation, pore hydrophobic collapse rapidly halts ion flow. Subsequent voltage-sensing domain (VSD) relaxation, including inward, 15-angstrom S4-helix motion, completes the transition. On activation, outward S4 motion tightens the VSD–pore linker, perturbing linker–S6-helix packing. Fluctuations allow water, then potassium ions, to reenter the pore; linker-S6 repacking stabilizes the open pore. We propose a mechanistic model for the sodium/potassium/calcium voltage-gated ion channel superfamily that reconciles apparently conflicting experimental data.

1 D. E. Shaw Research, New York, NY 10036, USA.
2 Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA.

* To whom correspondence should be addressed. E-mail: morten.jensen{at}DEShawResearch.com (M.Ø.J.); david.shaw{at}DEShawResearch.com (D.E.S.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Mitochondrial Channels: Ion Fluxes and More.
I. Szabo and M. Zoratti (2014)
Physiol Rev 94, 519-608
   Abstract »    Full Text »    PDF »
Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel.
I. Kim and A. Warshel (2014)
PNAS 111, 2128-2133
   Abstract »    Full Text »    PDF »
Evolutionary imprint of activation: The design principles of VSDs.
E. Palovcak, L. Delemotte, M. L. Klein, and V. Carnevale (2014)
J. Gen. Physiol. 143, 145-156
   Abstract »    Full Text »    PDF »
Drug-induced ion channel opening tuned by the voltage sensor charge profile.
N. E. Ottosson, S. I. Liin, and F. Elinder (2014)
J. Gen. Physiol. 143, 173-182
   Abstract »    Full Text »    PDF »
Hydrophobic plug functions as a gate in voltage-gated proton channels.
A. Chamberlin, F. Qiu, S. Rebolledo, Y. Wang, S. Y. Noskov, and H. P. Larsson (2014)
PNAS 111, E273-E282
   Abstract »    Full Text »    PDF »
Dynamic PIP2 interactions with voltage sensor elements contribute to KCNQ2 channel gating.
Q. Zhang, P. Zhou, Z. Chen, M. Li, H. Jiang, Z. Gao, and H. Yang (2013)
PNAS 110, 20093-20098
   Abstract »    Full Text »    PDF »
Multistate Structural Modeling and Voltage-Clamp Analysis of Epilepsy/Autism Mutation Kv10.2-R327H Demonstrate the Role of This Residue in Stabilizing the Channel Closed State.
Y. Yang, D. V. Vasylyev, F. Dib-Hajj, K. R. Veeramah, M. F. Hammer, S. D. Dib-Hajj, and S. G. Waxman (2013)
J. Neurosci. 33, 16586-16593
   Abstract »    Full Text »    PDF »
A gating charge interaction required for late slow inactivation of the bacterial sodium channel NavAb.
T. M. Gamal El-Din, G. Q. Martinez, J. Payandeh, T. Scheuer, and W. A. Catterall (2013)
J. Gen. Physiol. 142, 181-190
   Abstract »    Full Text »    PDF »
Dynamics of internal pore opening in KV channels probed by a fluorescent unnatural amino acid.
T. Kalstrup and R. Blunck (2013)
PNAS 110, 8272-8277
   Abstract »    Full Text »    PDF »
Transduction of Voltage and Ca2+ Signals by Slo1 BK Channels.
T. Hoshi, A. Pantazis, and R. Olcese (2013)
Physiology 28, 172-189
   Abstract »    Full Text »    PDF »
Atomic-level simulation of current-voltage relationships in single-file ion channels.
M. O. Jensen, V. Jogini, M. P. Eastwood, and D. E. Shaw (2013)
J. Gen. Physiol. 141, 619-632
   Abstract »    Full Text »    PDF »
Fine-tuning of Voltage Sensitivity of the Kv1.2 Potassium Channel by Interhelix Loop Dynamics.
R. Sand, N. Sharmin, C. Morgan, and W. J. Gallin (2013)
J. Biol. Chem. 288, 9686-9695
   Abstract »    Full Text »    PDF »
Voltage-Gated Proton Channels: Molecular Biology, Physiology, and Pathophysiology of the HV Family.
T. E. DeCoursey (2013)
Physiol Rev 93, 599-652
   Abstract »    Full Text »    PDF »
Construction and validation of a homology model of the human voltage-gated proton channel hHV1.
K. Kulleperuma, S. M. E. Smith, D. Morgan, B. Musset, J. Holyoake, N. Chakrabarti, V. V. Cherny, T. E. DeCoursey, and R. Pomes (2013)
J. Gen. Physiol. 141, 445-465
   Abstract »    Full Text »    PDF »
Intracellular Gating in an Inward-facing State of Aspartate Transporter GltPh Is Regulated by the Movements of the Helical Hairpin HP2.
E. Zomot and I. Bahar (2013)
J. Biol. Chem. 288, 8231-8237
   Abstract »    Full Text »    PDF »
Molecular mechanism of voltage sensing in voltage-gated proton channels.
C. Gonzalez, S. Rebolledo, M. E. Perez, and H. P. Larsson (2013)
J. Gen. Physiol. 141, 275-285
   Abstract »    Full Text »    PDF »
The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state.
I. Kopljar, A. J. Labro, T. de Block, J. D. Rainier, J. Tytgat, and D. J. Snyders (2013)
J. Gen. Physiol. 141, 359-369
   Abstract »    Full Text »    PDF »
C-type inactivation of voltage-gated K+ channels: Pore constriction or dilation?.
T. Hoshi and C. M. Armstrong (2013)
J. Gen. Physiol. 141, 151-160
   Full Text »    PDF »
Exploring conformational states of the bacterial voltage-gated sodium channel NavAb via molecular dynamics simulations.
C. Amaral, V. Carnevale, M. L. Klein, and W. Treptow (2012)
PNAS 109, 21336-21341
   Abstract »    Full Text »    PDF »
Unraveling the strokes of ion channel molecular machines in computers.
E. Lindahl (2012)
PNAS 109, 21186-21187
   Full Text »    PDF »
Intermediate state trapping of a voltage sensor.
J. J. Lacroix, S. A. Pless, L. Maragliano, F. V. Campos, J. D. Galpin, C. A. Ahern, B. Roux, and F. Bezanilla (2012)
J. Gen. Physiol. 140, 635-652
   Abstract »    Full Text »    PDF »
An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations.
E. Vargas, V. Yarov-Yarovoy, F. Khalili-Araghi, W. A. Catterall, M. L. Klein, M. Tarek, E. Lindahl, K. Schulten, E. Perozo, F. Bezanilla, et al. (2012)
J. Gen. Physiol. 140, 587-594
   Abstract »    Full Text »    PDF »
Gating pore currents and the resting state of Nav1.4 voltage sensor domains.
P. Gosselin-Badaroudine, L. Delemotte, A. Moreau, M. L. Klein, and M. Chahine (2012)
PNAS 109, 19250-19255
   Abstract »    Full Text »    PDF »
A Limited 4 A Radial Displacement of the S4-S5 Linker Is Sufficient for Internal Gate Closing in Kv Channels.
E. Faure, G. Starek, H. McGuire, S. Berneche, and R. Blunck (2012)
J. Biol. Chem. 287, 40091-40098
   Abstract »    Full Text »    PDF »
Initial steps in the opening of a Shaker potassium channel.
T. Hoshi and C. M. Armstrong (2012)
PNAS 109, 12800-12804
   Abstract »    Full Text »    PDF »
Voltage-sensor cycle fully described.
C. Domene (2012)
PNAS 109, 8362-8363
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882