Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 336 (6080): 477-481

Copyright © 2012 by the American Association for the Advancement of Science

GSK3-TIP60-ULK1 Signaling Pathway Links Growth Factor Deprivation to Autophagy

Shu-Yong Lin,1,* Terytty Yang Li,1,* Qing Liu,1 Cixiong Zhang,1 Xiaotong Li,1 Yan Chen,1 Shi-Meng Zhang,2 Guili Lian,1 Qi Liu,1 Ka Ruan,1 Zhen Wang,1 Chen-Song Zhang,1 Kun-Yi Chien,3 Jiawei Wu,4 Qinxi Li,1 Jiahuai Han,1 Sheng-Cai Lin1,{dagger}

Abstract: In metazoans, cells depend on extracellular growth factors for energy homeostasis. We found that glycogen synthase kinase-3 (GSK3), when deinhibited by default in cells deprived of growth factors, activates acetyltransferase TIP60 through phosphorylating TIP60-Ser86, which directly acetylates and stimulates the protein kinase ULK1, which is required for autophagy. Cells engineered to express TIP60S86A that cannot be phosphorylated by GSK3 could not undergo serum deprivation–induced autophagy. An acetylation-defective mutant of ULK1 failed to rescue autophagy in ULK1–/– mouse embryonic fibroblasts. Cells used signaling from GSK3 to TIP60 and ULK1 to regulate autophagy when deprived of serum but not glucose. These findings uncover an activating pathway that integrates protein phosphorylation and acetylation to connect growth factor deprivation to autophagy.

1 State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian 361005, China.
2 Beijing Institute of Radiation Medicine, Beijing 100850, China.
3 Molecular Medicine Research Center, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.
4 School of Life Science, Tsinghua University, Beijing 100101, China.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: linsc{at}

BAT3 modulates p300-dependent acetylation of p53 and autophagy-related protein 7 (ATG7) during autophagy.
S. Sebti, C. Prebois, E. Perez-Gracia, C. Bauvy, F. Desmots, N. Pirot, C. Gongora, A.-S. Bach, A. V. Hubberstey, V. Palissot, et al. (2014)
PNAS 111, 4115-4120
   Abstract »    Full Text »    PDF »
Autophagy and thyroid carcinogenesis: genetic and epigenetic links.
F. Morani, R. Titone, L. Pagano, A. Galetto, O. Alabiso, G. Aimaretti, and C. Isidoro (2014)
Endocr. Relat. Cancer 21, R13-R29
   Abstract »    Full Text »    PDF »
Autophagy facilitates cytokine-induced ICAM-1 expression.
C.-Y. Wang, T.-H. Chiang, C.-L. Chen, P.-C. Tseng, S.-Y. Chien, Y.-J. Chuang, T.-T. Yang, C.-Y. Hsieh, P.-C. Choi, and C.-F. Lin (2014)
Innate Immunity 20, 200-213
   Abstract »    Full Text »    PDF »
Inhibition of GSK-3 Induces Differentiation and Impaired Glucose Metabolism in Renal Cancer.
K. Pal, Y. Cao, I. N. Gaisina, S. Bhattacharya, S. K. Dutta, E. Wang, H. Gunosewoyo, A. P. Kozikowski, D. D. Billadeau, and D. Mukhopadhyay (2014)
Mol. Cancer Ther. 13, 285-296
   Abstract »    Full Text »    PDF »
Mammalian Target of Rapamycin Signaling in Cardiac Physiology and Disease.
S. Sciarretta, M. Volpe, and J. Sadoshima (2014)
Circ. Res. 114, 549-564
   Abstract »    Full Text »    PDF »
CPLM: a database of protein lysine modifications.
Z. Liu, Y. Wang, T. Gao, Z. Pan, H. Cheng, Q. Yang, Z. Cheng, A. Guo, J. Ren, and Y. Xue (2014)
Nucleic Acids Res. 42, D531-D536
   Abstract »    Full Text »    PDF »
Mechanism and Physiological Significance of Growth Factor-Related Autophagy.
T. Y. Li, S.-Y. Lin, and S.-C. Lin (2013)
Physiology 28, 423-431
   Abstract »    Full Text »    PDF »
60-kDa Tat-interactive Protein (TIP60) Positively Regulates Th-inducing POK (ThPOK)-mediated Repression of Eomesodermin in Human CD4+ T Cells.
Y. Li, A. Tsun, Z. Gao, Z. Han, Y. Gao, Z. Li, F. Lin, Y. Wang, G. Wei, Z. Yao, et al. (2013)
J. Biol. Chem. 288, 15537-15546
   Abstract »    Full Text »    PDF »
A Targeted Genetic Modifier Screen Links the SWI2/SNF2 Protein Domino to Growth and Autophagy Genes in Drosophila melanogaster.
M. H. Kwon, H. Callaway, J. Zhong, and B. Yedvobnick (2013)
g3 3, 815-825
   Abstract »    Full Text »    PDF »
RVBs Are Required for Assembling a Functional TIP60 Complex.
S. Jha, A. Gupta, A. Dar, and A. Dutta (2013)
Mol. Cell. Biol. 33, 1164-1174
   Abstract »    Full Text »    PDF »
Impaired G1-Arrest, Autophagy, and Apoptosis in Atg7-Knockout Mice.
S. Kageyama and M. Komatsu (2012)
Circ. Res. 111, 962-964
   Full Text »    PDF »
New Targets for Acetylation in Autophagy.
A. Hamai and P. Codogno (2012)
Science Signaling 5, pe29
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882