Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 336 (6081): 579-582

Copyright © 2012 by the American Association for the Advancement of Science

Imaginal Discs Secrete Insulin-Like Peptide 8 to Mediate Plasticity of Growth and Maturation

Andres Garelli,* Alisson M. Gontijo,* Veronica Miguela, Esther Caparros, Maria Dominguez{dagger}

Abstract: Developing animals frequently adjust their growth programs and/or their maturation or metamorphosis to compensate for growth disturbances (such as injury or tumor) and ensure normal adult size. Such plasticity entails tissue and organ communication to preserve their proportions and symmetry. Here, we show that imaginal discs autonomously activate DILP8, a Drosophila insulin-like peptide, to communicate abnormal growth and postpone maturation. DILP8 delays metamorphosis by inhibiting ecdysone biosynthesis, slowing growth in the imaginal discs, and generating normal-sized animals. Loss of dilp8 yields asymmetric individuals with an unusually large variation in size and a more varied time of maturation. Thus, DILP8 is a fundamental element of the hitherto ill-defined machinery governing the plasticity that ensures developmental stability and robustness.

Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas–Universidad Miguel Hernández de Elche, Sant Joan d’Alacant, 03550 Alicante, Spain.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: m.dominguez{at}umh.es


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Central Cell-Derived Peptides Regulate Early Embryo Patterning in Flowering Plants.
L. M. Costa, E. Marshall, M. Tesfaye, K. A. T. Silverstein, M. Mori, Y. Umetsu, S. L. Otterbach, R. Papareddy, H. G. Dickinson, K. Boutiller, et al. (2014)
Science 344, 168-172
   Abstract »    Full Text »    PDF »
The Drosophila insulin-degrading enzyme restricts growth by modulating the PI3K pathway in a cell-autonomous manner.
D. Galagovsky, M. J. Katz, J. M. Acevedo, E. Sorianello, A. Glavic, and P. Wappner (2014)
Mol. Biol. Cell 25, 916-924
   Abstract »    Full Text »    PDF »
Modeling metabolic homeostasis and nutrient sensing in Drosophila: implications for aging and metabolic diseases.
E. Owusu-Ansah and N. Perrimon (2014)
Dis. Model. Mech. 7, 343-350
   Abstract »    Full Text »    PDF »
Insulin signaling regulates neurite growth during metamorphic neuronal remodeling.
T. Gu, T. Zhao, and R. S. Hewes (2014)
Biology Open 3, 81-93
   Abstract »    Full Text »    PDF »
Promoting longevity by maintaining metabolic and proliferative homeostasis.
L. Wang, J. Karpac, and H. Jasper (2014)
J. Exp. Biol. 217, 109-118
   Abstract »    Full Text »    PDF »
The role of reduced oxygen in the developmental physiology of growth and metamorphosis initiation in Drosophila melanogaster.
V. Callier, A. W. Shingleton, C. S. Brent, S. M. Ghosh, J. Kim, and J. F. Harrison (2013)
J. Exp. Biol. 216, 4334-4340
   Abstract »    Full Text »    PDF »
Dynamic feedback circuits function as a switch for shaping a maturation-inducing steroid pulse in Drosophila.
M. E. Moeller, E. T. Danielsen, R. Herder, M. B. O'Connor, and K. F. Rewitz (2013)
Development 140, 4730-4739
   Abstract »    Full Text »    PDF »
Developmental arrest of Drosophila survival motor neuron (Smn) mutants accounts for differences in expression of minor intron-containing genes.
E. L. Garcia, Z. Lu, M. P. Meers, K. Praveen, and A. G. Matera (2013)
RNA 19, 1510-1516
   Abstract »    Full Text »    PDF »
A molt timer is involved in the metamorphic molt in Manduca sexta larvae.
Y. Suzuki, T. Koyama, K. Hiruma, L. M. Riddiford, and J. W. Truman (2013)
PNAS 110, 12518-12525
   Abstract »    Full Text »    PDF »
The IGFBP7 homolog Imp-L2 promotes insulin signaling in distinct neurons of the Drosophila brain.
R. Bader, L. Sarraf-Zadeh, M. Peters, N. Moderau, H. Stocker, K. Kohler, M. J. Pankratz, and E. Hafen (2013)
J. Cell Sci. 126, 2571-2576
   Abstract »    Full Text »    PDF »
Temperature-size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster.
S. M. Ghosh, N. D. Testa, and A. W. Shingleton (2013)
Proc R Soc B 280, 20130174
   Abstract »    Full Text »    PDF »
An in vivo large-scale chemical screening platform using Drosophila for anti-cancer drug discovery.
L. F. Willoughby, T. Schlosser, S. A. Manning, J. P. Parisot, I. P. Street, H. E. Richardson, P. O. Humbert, and A. M. Brumby (2013)
Dis. Model. Mech. 6, 521-529
   Abstract »    Full Text »    PDF »
Drosophila neuroblasts: a model for stem cell biology.
C. C. F. Homem and J. A. Knoblich (2012)
Development 139, 4297-4310
   Abstract »    Full Text »    PDF »
How Growth Abnormalities Delay "Puberty" in Drosophila.
I. K. Hariharan (2012)
Science Signaling 5, pe27
   Abstract »    Full Text »    PDF »
Secreted Peptide Dilp8 Coordinates Drosophila Tissue Growth with Developmental Timing.
J. Colombani, D. S. Andersen, and P. Leopold (2012)
Science 336, 582-585
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882