Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 336 (6081): 582-585

Copyright © 2012 by the American Association for the Advancement of Science

Secreted Peptide Dilp8 Coordinates Drosophila Tissue Growth with Developmental Timing

Julien Colombani,* Ditte S. Andersen,*,{dagger} Pierre Léopold{dagger}

Abstract: Little is known about how organ growth is monitored and coordinated with the developmental timing in complex organisms. In insects, impairment of larval tissue growth delays growth and morphogenesis, revealing a coupling mechanism. We carried out a genetic screen in Drosophila to identify molecules expressed by growing tissues participating in this coupling and identified dilp8 as a gene whose silencing rescues the developmental delay induced by abnormally growing tissues. dilp8 is highly induced in conditions where growth impairment produces a developmental delay. dilp8 encodes a peptide for which expression and secretion are sufficient to delay metamorphosis without affecting tissue integrity. We propose that Dilp8 peptide is a secreted signal that coordinates the growth status of tissues with developmental timing.

Université de Nice, INSERM 1091, CNRS 7277, and France Institute of Biology, Parc Valrose, 06108 Nice, France.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: leopold{at}unice.fr (P.L.); andersen{at}unice.fr (D.S.A.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The Drosophila insulin-degrading enzyme restricts growth by modulating the PI3K pathway in a cell-autonomous manner.
D. Galagovsky, M. J. Katz, J. M. Acevedo, E. Sorianello, A. Glavic, and P. Wappner (2014)
Mol. Biol. Cell 25, 916-924
   Abstract »    Full Text »    PDF »
Modeling metabolic homeostasis and nutrient sensing in Drosophila: implications for aging and metabolic diseases.
E. Owusu-Ansah and N. Perrimon (2014)
Dis. Model. Mech. 7, 343-350
   Abstract »    Full Text »    PDF »
Insulin signaling regulates neurite growth during metamorphic neuronal remodeling.
T. Gu, T. Zhao, and R. S. Hewes (2014)
Biology Open 3, 81-93
   Abstract »    Full Text »    PDF »
Promoting longevity by maintaining metabolic and proliferative homeostasis.
L. Wang, J. Karpac, and H. Jasper (2014)
J. Exp. Biol. 217, 109-118
   Abstract »    Full Text »    PDF »
The role of reduced oxygen in the developmental physiology of growth and metamorphosis initiation in Drosophila melanogaster.
V. Callier, A. W. Shingleton, C. S. Brent, S. M. Ghosh, J. Kim, and J. F. Harrison (2013)
J. Exp. Biol. 216, 4334-4340
   Abstract »    Full Text »    PDF »
Dynamic feedback circuits function as a switch for shaping a maturation-inducing steroid pulse in Drosophila.
M. E. Moeller, E. T. Danielsen, R. Herder, M. B. O'Connor, and K. F. Rewitz (2013)
Development 140, 4730-4739
   Abstract »    Full Text »    PDF »
Developmental arrest of Drosophila survival motor neuron (Smn) mutants accounts for differences in expression of minor intron-containing genes.
E. L. Garcia, Z. Lu, M. P. Meers, K. Praveen, and A. G. Matera (2013)
RNA 19, 1510-1516
   Abstract »    Full Text »    PDF »
To Grow or Not to Grow: Nutritional Control of Development During Caenorhabditis elegans L1 Arrest.
L. R. Baugh (2013)
Genetics 194, 539-555
   Abstract »    Full Text »    PDF »
The IGFBP7 homolog Imp-L2 promotes insulin signaling in distinct neurons of the Drosophila brain.
R. Bader, L. Sarraf-Zadeh, M. Peters, N. Moderau, H. Stocker, K. Kohler, M. J. Pankratz, and E. Hafen (2013)
J. Cell Sci. 126, 2571-2576
   Abstract »    Full Text »    PDF »
Complex expression dynamics and robustness in C. elegans insulin networks.
A. D. Ritter, Y. Shen, J. Fuxman Bass, S. Jeyaraj, B. Deplancke, A. Mukhopadhyay, J. Xu, M. Driscoll, H. A. Tissenbaum, and A. J. M. Walhout (2013)
Genome Res. 23, 954-965
   Abstract »    Full Text »    PDF »
Temperature-size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster.
S. M. Ghosh, N. D. Testa, and A. W. Shingleton (2013)
Proc R Soc B 280, 20130174
   Abstract »    Full Text »    PDF »
An in vivo large-scale chemical screening platform using Drosophila for anti-cancer drug discovery.
L. F. Willoughby, T. Schlosser, S. A. Manning, J. P. Parisot, I. P. Street, H. E. Richardson, P. O. Humbert, and A. M. Brumby (2013)
Dis. Model. Mech. 6, 521-529
   Abstract »    Full Text »    PDF »
OrysPSSP: a comparative Platform for Small Secreted Proteins from rice and other plants.
B. Pan, J. Sheng, W. Sun, Y. Zhao, P. Hao, and X. Li (2013)
Nucleic Acids Res. 41, D1192-D1198
   Abstract »    Full Text »    PDF »
Drosophila neuroblasts: a model for stem cell biology.
C. C. F. Homem and J. A. Knoblich (2012)
Development 139, 4297-4310
   Abstract »    Full Text »    PDF »
How Growth Abnormalities Delay "Puberty" in Drosophila.
I. K. Hariharan (2012)
Science Signaling 5, pe27
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882