Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 336 (6082): 728-732

Copyright © 2012 by the American Association for the Advancement of Science

Structural Basis for DNA Damage–Dependent Poly(ADP-ribosyl)ation by Human PARP-1

Marie-France Langelier, Jamie L. Planck, Swati Roy, John M. Pascal*

Abstract: Poly(ADP-ribose) polymerase–1 (PARP-1) (ADP, adenosine diphosphate) has a modular domain architecture that couples DNA damage detection to poly(ADP-ribosyl)ation activity through a poorly understood mechanism. Here, we report the crystal structure of a DNA double-strand break in complex with human PARP-1 domains essential for activation (Zn1, Zn3, WGR-CAT). PARP-1 engages DNA as a monomer, and the interaction with DNA damage organizes PARP-1 domains into a collapsed conformation that can explain the strong preference for automodification. The Zn1, Zn3, and WGR domains collectively bind to DNA, forming a network of interdomain contacts that links the DNA damage interface to the catalytic domain (CAT). The DNA damage–induced conformation of PARP-1 results in structural distortions that destabilize the CAT. Our results suggest that an increase in CAT protein dynamics underlies the DNA-dependent activation mechanism of PARP-1.

Department of Biochemistry and Molecular Biology, The Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.

* To whom correspondence should be addressed. E-mail: john.pascal{at}

PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways.
C. Beck, C. Boehler, J. G. Barbat, M.-E. Bonnet, G. Illuzzi, P. Ronde, L. R. Gauthier, N. Magroun, A. Rajendran, B. S. Lopez, et al. (2014)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
Stereospecific PARP Trapping by BMN 673 and Comparison with Olaparib and Rucaparib.
J. Murai, S.-Y. N. Huang, A. Renaud, Y. Zhang, J. Ji, S. Takeda, J. Morris, B. Teicher, J. H. Doroshow, and Y. Pommier (2014)
Mol. Cancer Ther. 13, 433-443
   Abstract »    Full Text »    PDF »
Targeting PARP-1 Allosteric Regulation Offers Therapeutic Potential against Cancer.
J. D. Steffen, R. M. Tholey, M.-F. Langelier, J. L. Planck, M. J. Schiewer, S. Lal, N. A. Bildzukewicz, C. J. Yeo, K. E. Knudsen, J. R. Brody, et al. (2014)
Cancer Res. 74, 31-37
   Abstract »    Full Text »    PDF »
The RNA-binding Protein Fused in Sarcoma (FUS) Functions Downstream of Poly(ADP-ribose) Polymerase (PARP) in Response to DNA Damage.
A. S. Mastrocola, S. H. Kim, A. T. Trinh, L. A. Rodenkirch, and R. S. Tibbetts (2013)
J. Biol. Chem. 288, 24731-24741
   Abstract »    Full Text »    PDF »
Cisplatin Resistance Associated with PARP Hyperactivation.
J. Michels, I. Vitale, L. Galluzzi, J. Adam, K. A. Olaussen, O. Kepp, L. Senovilla, I. Talhaoui, J. Guegan, D. P. Enot, et al. (2013)
Cancer Res. 73, 2271-2280
   Abstract »    Full Text »    PDF »
Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors.
J. Murai, S.-y. N. Huang, B. B. Das, A. Renaud, Y. Zhang, J. H. Doroshow, J. Ji, S. Takeda, and Y. Pommier (2012)
Cancer Res. 72, 5588-5599
   Abstract »    Full Text »    PDF »
Alternative Modes of Binding of Poly(ADP-ribose) Polymerase 1 to Free DNA and Nucleosomes.
N. J. Clark, M. Kramer, U. M. Muthurajan, and K. Luger (2012)
J. Biol. Chem. 287, 32430-32439
   Abstract »    Full Text »    PDF »
PARP-1 Activation--Bringing the Pieces Together.
J.-P. Gagne, M. Rouleau, and G. G. Poirier (2012)
Science 336, 678-679
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882