Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 336 (6086): 1321-1325

Copyright © 2012 by the American Association for the Advancement of Science

Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria

Gregory F. Sonnenberg,1 Laurel A. Monticelli,1 Theresa Alenghat,1 Thomas C. Fung,1 Natalie A. Hutnick,2 Jun Kunisawa,3,4 Naoko Shibata,3,4 Stephanie Grunberg,1 Rohini Sinha,1 Adam M. Zahm,5 Mélanie R. Tardif,6 Taheri Sathaliyawala,7 Masaru Kubota,7 Donna L. Farber,7 Ronald G. Collman,8 Abraham Shaked,9 Lynette A. Fouser,10 David B. Weiner,2 Philippe A. Tessier,6 Joshua R. Friedman,5 Hiroshi Kiyono,3,4,11 Frederic D. Bushman,1 Kyong-Mi Chang,8,12 David Artis1,13,*

Abstract: The mammalian intestinal tract is colonized by trillions of beneficial commensal bacteria that are anatomically restricted to specific niches. However, the mechanisms that regulate anatomical containment remain unclear. Here, we show that interleukin-22 (IL-22)–producing innate lymphoid cells (ILCs) are present in intestinal tissues of healthy mammals. Depletion of ILCs resulted in peripheral dissemination of commensal bacteria and systemic inflammation, which was prevented by administration of IL-22. Disseminating bacteria were identified as Alcaligenes species originating from host lymphoid tissues. Alcaligenes was sufficient to promote systemic inflammation after ILC depletion in mice, and Alcaligenes-specific systemic immune responses were associated with Crohn’s disease and progressive hepatitis C virus infection in patients. Collectively, these data indicate that ILCs regulate selective containment of lymphoid-resident bacteria to prevent systemic inflammation associated with chronic diseases.

1 Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
2 Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
3 Division of Mucosal Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
4 Department of Medical Genome Science, Graduate School of Frontier Science, The University of Tokyo, Chiba 277-8562, Japan.
5 Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Perelman School of Medicine, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA.
6 Centre de Recherche en Infectiologie, Centre Hospitalier de l’Université Laval, Faculty of Medicine, Laval University, Quebec, Canada.
7 Department of Surgery and the Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.
8 Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
9 Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
10 Inflammation and Immunology Research Unit, Biotherapeutics Research and Development, Pfizer Worldwide R&D, Cambridge, MA 02140, USA.
11 Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo 102-0075, Japan.
12 Philadelphia VA Medical Center, Philadelphia, PA 19104, USA.
13 Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

* To whom correspondence should be addressed. E-mail: dartis{at}mail.med.upenn.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Enteric Mucosa Integrity in the Presence of a Preserved Innate Interleukin 22 Compartment in HIV Type 1-Treated Individuals.
S. M. Fernandes, A. R. Pires, C. Ferreira, R. B. Foxall, J. Rino, C. Santos, L. Correia, J. Pocas, H. Veiga-Fernandes, and A. E. Sousa (2014)
The Journal of Infectious Disease
   Abstract »    Full Text »    PDF »
Intrahepatic Innate Lymphoid Cells Secrete IL-17A and IL-17F That Are Crucial for T Cell Priming in Viral Infection.
Z. Jie, Y. Liang, L. Hou, C. Dong, Y. Iwakura, L. Soong, Y. Cong, and J. Sun (2014)
J. Immunol. 192, 3289-3300
   Abstract »    Full Text »    PDF »
Activation of Type 3 Innate Lymphoid Cells and Interleukin 22 Secretion in the Lungs During Streptococcus pneumoniae Infection.
L. Van Maele, C. Carnoy, D. Cayet, S. Ivanov, R. Porte, E. Deruy, J. A. Chabalgoity, J.-C. Renauld, G. Eberl, A. G. Benecke, et al. (2014)
The Journal of Infectious Disease
   Abstract »    Full Text »    PDF »
Conventional NK Cells Can Produce IL-22 and Promote Host Defense in Klebsiella pneumoniae Pneumonia.
X. Xu, I. D. Weiss, H. H. Zhang, S. P. Singh, T. A. Wynn, M. S. Wilson, and J. M. Farber (2014)
J. Immunol. 192, 1778-1786
   Abstract »    Full Text »    PDF »
IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis.
E. Hams, M. E. Armstrong, J. L. Barlow, S. P. Saunders, C. Schwartz, G. Cooke, R. J. Fahy, T. B. Crotty, N. Hirani, R. J. Flynn, et al. (2014)
PNAS 111, 367-372
   Abstract »    Full Text »    PDF »
Comparative Anatomy, Physiology, and Mechanisms of Disease Production of the Esophagus, Stomach, and Small Intestine.
H. B. Gelberg (2014)
Toxicol Pathol 42, 54-66
   Abstract »    Full Text »    PDF »
Candida albicans Airway Exposure Primes the Lung Innate Immune Response against Pseudomonas aeruginosa Infection through Innate Lymphoid Cell Recruitment and Interleukin-22-Associated Mucosal Response.
J. B. Mear, P. Gosset, E. Kipnis, E. Faure, R. Dessein, S. Jawhara, C. Fradin, K. Faure, D. Poulain, B. Sendid, et al. (2014)
Infect. Immun. 82, 306-315
   Abstract »    Full Text »    PDF »
Antibody Response to Achromobacter xylosoxidans during HIV Infection Is Associated with Lower CD4 Levels and Increased Lymphocyte Activation.
E. T. Tatro, I. Purnajo, D. D. Richman, D. M. Smith, S. Gianella, and V. M. Litwin (2014)
Clin. Vaccine Immunol. 21, 46-50
   Abstract »    Full Text »    PDF »
Nonredundant Function of Soluble LT{alpha}3 Produced by Innate Lymphoid Cells in Intestinal Homeostasis.
A. A. Kruglov, S. I. Grivennikov, D. V. Kuprash, C. Winsauer, S. Prepens, G. M. Seleznik, G. Eberl, D. R. Littman, M. Heikenwalder, A. V. Tumanov, et al. (2013)
Science 342, 1243-1246
   Abstract »    Full Text »    PDF »
Recent advances in inflammatory bowel disease: mucosal immune cells in intestinal inflammation.
M. Z. Cader and A. Kaser (2013)
Gut 62, 1653-1664
   Abstract »    Full Text »    PDF »
Human CD4+CD3- Innate-Like T Cells Provide a Source of TNF and Lymphotoxin-{alpha}{beta} and Are Elevated in Rheumatoid Arthritis.
V. Bekiaris, J. R. Sedy, M. Rossetti, R. Spreafico, S. Sharma, A. Rhode-Kurnow, B. C. Ware, N. Huang, M. G. Macauley, P. S. Norris, et al. (2013)
J. Immunol. 191, 4611-4618
   Abstract »    Full Text »    PDF »
TCF-1 Controls ILC2 and NKp46+ROR{gamma}t+ Innate Lymphocyte Differentiation and Protection in Intestinal Inflammation.
L. A. Mielke, J. R. Groom, L. C. Rankin, C. Seillet, F. Masson, T. Putoczki, and G. T. Belz (2013)
J. Immunol. 191, 4383-4391
   Abstract »    Full Text »    PDF »
Interleukin-22 Reduces Lung Inflammation during Influenza A Virus Infection and Protects against Secondary Bacterial Infection.
S. Ivanov, J. Renneson, J. Fontaine, A. Barthelemy, C. Paget, E. M. Fernandez, F. Blanc, C. De Trez, L. Van Maele, L. Dumoutier, et al. (2013)
J. Virol. 87, 6911-6924
   Abstract »    Full Text »    PDF »
Retinoic acid expression associates with enhanced IL-22 production by {gamma}{delta} T cells and innate lymphoid cells and attenuation of intestinal inflammation.
L. A. Mielke, S. A. Jones, M. Raverdeau, R. Higgs, A. Stefanska, J. R. Groom, A. Misiak, L. S. Dungan, C. E. Sutton, G. Streubel, et al. (2013)
J. Exp. Med. 210, 1117-1124
   Abstract »    Full Text »    PDF »
The Polysaccharide Capsule of Campylobacter jejuni Modulates the Host Immune Response.
A. C. Maue, K. L. Mohawk, D. K. Giles, F. Poly, C. P. Ewing, Y. Jiao, G. Lee, Z. Ma, M. A. Monteiro, C. L. Hill, et al. (2013)
Infect. Immun. 81, 665-672
   Abstract »    Full Text »    PDF »
Role of the Gut Microbiota in the Development and Function of Lymphoid Cells.
N. Kamada and G. Nunez (2013)
J. Immunol. 190, 1389-1395
   Abstract »    Full Text »    PDF »
TSLP Elicits IL-33-Independent Innate Lymphoid Cell Responses to Promote Skin Inflammation.
B. S. Kim, M. C. Siracusa, S. A. Saenz, M. Noti, L. A. Monticelli, G. F. Sonnenberg, M. R. Hepworth, A. S. Van Voorhees, M. R. Comeau, and D. Artis (2013)
Science Translational Medicine 5, 170ra16
   Abstract »    Full Text »    PDF »
Cutting Edge: IL-17-Secreting Innate Lymphoid Cells Are Essential for Host Defense against Fungal Infection.
A. Gladiator, N. Wangler, K. Trautwein-Weidner, and S. LeibundGut-Landmann (2013)
J. Immunol. 190, 521-525
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882