Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 337 (6094): 587-590

Copyright © 2012 by the American Association for the Advancement of Science

Mitochondrial Import Efficiency of ATFS-1 Regulates Mitochondrial UPR Activation

Amrita M. Nargund,1,* Mark W. Pellegrino,1,* Christopher J. Fiorese,1,2 Brooke M. Baker,1 Cole M. Haynes1,2,{dagger}

Abstract: To better understand the response to mitochondrial dysfunction, we examined the mechanism by which ATFS-1 (activating transcription factor associated with stress–1) senses mitochondrial stress and communicates with the nucleus during the mitochondrial unfolded protein response (UPRmt) in Caenorhabditis elegans. We found that the key point of regulation is the mitochondrial import efficiency of ATFS-1. In addition to a nuclear localization sequence, ATFS-1 has an N-terminal mitochondrial targeting sequence that is essential for UPRmt repression. Normally, ATFS-1 is imported into mitochondria and degraded. However, during mitochondrial stress, we found that import efficiency was reduced, allowing a percentage of ATFS-1 to accumulate in the cytosol and traffic to the nucleus. Our results show that cells monitor mitochondrial import efficiency via ATFS-1 to coordinate the level of mitochondrial dysfunction with the protective transcriptional response.

1 Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
2 BCMB Allied Program, Weill Cornell Medical College, New York, NY 10065, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: haynesc{at}mskcc.org


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3.
N. A. Khan, M. Auranen, I. Paetau, E. Pirinen, L. Euro, S. Forsstrom, L. Pasila, V. Velagapudi, C. J. Carroll, J. Auwerx, et al. (2014)
EMBO Mol Med.
   Abstract »    Full Text »    PDF »
Quantitative Analysis of the Mitochondrial and Plastid Proteomes of the Moss Physcomitrella patens Reveals Protein Macrocompartmentation and Microcompartmentation.
S. J. Mueller, D. Lang, S. N. W. Hoernstein, E. G. E. Lang, C. Schuessele, A. Schmidt, M. Fluck, D. Leisibach, C. Niegl, A. D. Zimmer, et al. (2014)
Plant Physiology 164, 2081-2095
   Abstract »    Full Text »    PDF »
The biochemistry and cell biology of aging: metabolic regulation through mitochondrial signaling.
Y. C. Long, T. M. C. Tan, I. Takao, and B. L. Tang (2014)
Am J Physiol Endocrinol Metab 306, E581-E591
   Abstract »    Full Text »    PDF »
Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial-nuclear interactions.
M. Cristina Kenney, M. Chwa, S. R. Atilano, P. Falatoonzadeh, C. Ramirez, D. Malik, M. Tarek, J. Caceres-del-Carpio, A. B. Nesburn, D. S. Boyer, et al. (2014)
Hum. Mol. Genet.
   Abstract »    Full Text »    PDF »
Cancer as a metabolic disease: implications for novel therapeutics.
T. N. Seyfried, R. E. Flores, A. M. Poff, and D. P. D'Agostino (2014)
Carcinogenesis 35, 515-527
   Abstract »    Full Text »    PDF »
Caenorhabditis elegans as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases.
C. I. Nussbaum-Krammer and R. I. Morimoto (2014)
Dis. Model. Mech. 7, 31-39
   Abstract »    Full Text »    PDF »
Transcellular chaperone signaling: an organismal strategy for integrated cell stress responses.
P. van Oosten-Hawle and R. I. Morimoto (2014)
J. Exp. Biol. 217, 129-136
   Abstract »    Full Text »    PDF »
The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease.
V. Jovaisaite, L. Mouchiroud, and J. Auwerx (2014)
J. Exp. Biol. 217, 137-143
   Abstract »    Full Text »    PDF »
Rheb and mammalian target of rapamycin in mitochondrial homoeostasis.
M. J. Groenewoud and F. J. T. Zwartkruis (2013)
Open Bio 3, 130185
   Abstract »    Full Text »    PDF »
Why translation counts for mitochondria - retrograde signalling links mitochondrial protein synthesis to mitochondrial biogenesis and cell proliferation.
B. J. Battersby and U. Richter (2013)
J. Cell Sci. 126, 4331-4338
   Abstract »    Full Text »    PDF »
Altered mitochondrial morphology and defective protein import reveal novel roles for Bax and/or Bak in skeletal muscle.
Y. Zhang, S. Iqbal, M. F. N. O'Leary, K. J. Menzies, A. Saleem, S. Ding, and D. A. Hood (2013)
Am J Physiol Cell Physiol 305, C502-C511
   Abstract »    Full Text »    PDF »
The mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathway.
M. Rauthan, P. Ranji, N. Aguilera Pradenas, C. Pitot, and M. Pilon (2013)
PNAS 110, 5981-5986
   Abstract »    Full Text »    PDF »
Processing and Subcellular Trafficking of ER-Tethered EIN2 Control Response to Ethylene Gas.
H. Qiao, Z. Shen, S.-s. C. Huang, R. J. Schmitz, M. A. Urich, S. P. Briggs, and J. R. Ecker (2012)
Science 338, 390-393
   Abstract »    Full Text »    PDF »
Mitochondrial Fission, Fusion, and Stress.
R. J. Youle and A. M. van der Bliek (2012)
Science 337, 1062-1065
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882