Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 338 (6105): 349-354

Copyright © 2012 by the American Association for the Advancement of Science

Transcriptional Architecture and Chromatin Landscape of the Core Circadian Clock in Mammals

Nobuya Koike,1 Seung-Hee Yoo,1 Hung-Chung Huang,1 Vivek Kumar,1 Choogon Lee,2 Tae-Kyung Kim,1 Joseph S. Takahashi1,3,*

Abstract: The mammalian circadian clock involves a transcriptional feed back loop in which CLOCK and BMAL1 activate the Period and Cryptochrome genes, which then feedback and repress their own transcription. We have interrogated the transcriptional architecture of the circadian transcriptional regulatory loop on a genome scale in mouse liver and find a stereotyped, time-dependent pattern of transcription factor binding, RNA polymerase II (RNAPII) recruitment, RNA expression, and chromatin states. We find that the circadian transcriptional cycle of the clock consists of three distinct phases: a poised state, a coordinated de novo transcriptional activation state, and a repressed state. Only 22% of messenger RNA (mRNA) cycling genes are driven by de novo transcription, suggesting that both transcriptional and posttranscriptional mechanisms underlie the mammalian circadian clock. We also find that circadian modulation of RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale far greater than that seen previously by gene expression profiling.

1 Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390–9111, USA.
2 Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.
3 Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390–9111, USA.

* To whom correspondence should be addressed. E-mail: joseph.takahashi{at}utsouthwestern.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Nuclear receptors rock around the clock.
X. Zhao, H. Cho, R. T. Yu, A. R. Atkins, M. Downes, and R. M. Evans (2014)
EMBO Rep.
   Abstract »    Full Text »    PDF »
The Tau Mutation of Casein Kinase 1{epsilon} Sets the Period of the Mammalian Pacemaker via Regulation of Period1 or Period2 Clock Proteins.
E. S. Maywood, J. E. Chesham, N. J. Smyllie, and M. H. Hastings (2014)
J Biol Rhythms 29, 110-118
   Abstract »    Full Text »    PDF »
The Methyltransferase WBSCR22/Merm1 Enhances Glucocorticoid Receptor Function and Is Regulated in Lung Inflammation and Cancer.
M. Jangani, T. M. Poolman, L. Matthews, N. Yang, S. N. Farrow, A. Berry, N. Hanley, A. J. K. Williamson, A. D. Whetton, R. Donn, et al. (2014)
J. Biol. Chem. 289, 8931-8946
   Abstract »    Full Text »    PDF »
Tick Tock: Time to Recognize the Kidney Clock.
M. L. Gumz (2014)
J. Am. Soc. Nephrol.
Local Renal Circadian Clocks Control Fluid-Electrolyte Homeostasis and BP.
N. Tokonami, D. Mordasini, S. Pradervand, G. Centeno, C. Jouffe, M. Maillard, O. Bonny, F. Gachon, R. A. Gomez, M. L. S. Sequeira-Lopez, et al. (2014)
J. Am. Soc. Nephrol.
   Abstract »
Gene Model 129 (Gm129) Encodes a Novel Transcriptional Repressor That Modulates Circadian Gene Expression.
Y. Annayev, S. Adar, Y.-Y. Chiou, J. D. Lieb, A. Sancar, and R. Ye (2014)
J. Biol. Chem. 289, 5013-5024
   Abstract »    Full Text »    PDF »
PNAS Plus: From the Cover: Mistimed sleep disrupts circadian regulation of the human transcriptome.
S. N. Archer, E. E. Laing, C. S. Moller-Levet, D. R. van der Veen, G. Bucca, A. S. Lazar, N. Santhi, A. Slak, R. Kabiljo, M. von Schantz, et al. (2014)
PNAS 111, E682-E691
   Abstract »    Full Text »    PDF »
The impact of chromatin dynamics on plant light responses and circadian clock function.
F. Barneche, J. Malapeira, and P. Mas (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver.
D. Mauvoisin, J. Wang, C. Jouffe, E. Martin, F. Atger, P. Waridel, M. Quadroni, F. Gachon, and F. Naef (2014)
PNAS 111, 167-172
   Abstract »    Full Text »    PDF »
CLOCK:BMAL1 is a pioneer-like transcription factor.
J. S. Menet, S. Pescatore, and M. Rosbash (2014)
Genes & Dev. 28, 8-13
   Abstract »    Full Text »    PDF »
Suppression of WC-independent frequency transcription by RCO-1 is essential for Neurospora circadian clock.
Z. Zhou, X. Liu, Q. Hu, N. Zhang, G. Sun, J. Cha, Y. Wang, Y. Liu, and Q. He (2013)
PNAS 110, E4867-E4874
   Abstract »    Full Text »    PDF »
Knitting Up the Raveled Sleave of Care.
G. Yang, G. Paschos, A. M. Curtis, E. S. Musiek, S. C. McLoughlin, and G. A. FitzGerald (2013)
Science Translational Medicine 5, 212rv3
   Full Text »    PDF »
TH17 Cell Differentiation Is Regulated by the Circadian Clock.
X. Yu, D. Rollins, K. A. Ruhn, J. J. Stubblefield, C. B. Green, M. Kashiwada, P. B. Rothman, J. S. Takahashi, and L. V. Hooper (2013)
Science 342, 727-730
   Abstract »    Full Text »    PDF »
Photoreceptor phagocytosis is mediated by phosphoinositide signaling.
D. Mustafi, B. M. Kevany, C. Genoud, X. Bai, and K. Palczewski (2013)
FASEB J 27, 4585-4595
   Abstract »    Full Text »    PDF »
The Ccr4-Not Protein Complex Regulates the Phase of the Neurospora Circadian Clock by Controlling WHITE COLLAR Protein Stability and Activity.
G. Huang, Q. He, J. Guo, J. Cha, and Y. Liu (2013)
J. Biol. Chem. 288, 31002-31009
   Abstract »    Full Text »    PDF »
A Looser Clock to Cure Jet Lag.
M. H. Hastings (2013)
Science 342, 52-53
   Abstract »    Full Text »    PDF »
CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus.
J. Cha, M. Zhou, and Y. Liu (2013)
EMBO Rep. 14, 923-930
   Abstract »    Full Text »    PDF »
A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery.
L. Lande-Diner, C. Boyault, J. Y. Kim, and C. J. Weitz (2013)
PNAS 110, 16021-16026
   Abstract »    Full Text »    PDF »
Opposing actions of Per1 and Cry2 in the regulation of Per1 target gene expression in the liver and kidney.
J. Richards, S. All, G. Skopis, K.-Y. Cheng, B. Compton, N. Srialluri, L. Stow, L. A. Jeffers, and M. L. Gumz (2013)
Am J Physiol Regulatory Integrative Comp Physiol 305, R735-R747
   Abstract »    Full Text »    PDF »
Circadian Clocks in the Cnidaria: Environmental Entrainment, Molecular Regulation, and Organismal Outputs.
A. M. Reitzel, A. M. Tarrant, and O. Levy (2013)
Integr. Comp. Biol. 53, 118-130
   Abstract »    Full Text »    PDF »
Mechanism of the circadian clock in physiology.
J. Richards and M. L. Gumz (2013)
Am J Physiol Regulatory Integrative Comp Physiol 304, R1053-R1064
   Abstract »    Full Text »    PDF »
Analysis of core circadian feedback loop in suprachiasmatic nucleus of mCry1-luc transgenic reporter mouse.
E. S. Maywood, L. Drynan, J. E. Chesham, M. D. Edwards, H. Dardente, J.-M. Fustin, D. G. Hazlerigg, J. S. O'Neill, G. F. Codner, N. J. Smyllie, et al. (2013)
PNAS 110, 9547-9552
   Abstract »    Full Text »    PDF »
Distinct and Separable Roles for Endogenous CRY1 and CRY2 within the Circadian Molecular Clockwork of the Suprachiasmatic Nucleus, as Revealed by the Fbxl3Afh Mutation.
S. N. Anand, E. S. Maywood, J. E. Chesham, G. Joynson, G. T. Banks, M. H. Hastings, and P. M. Nolan (2013)
J. Neurosci. 33, 7145-7153
   Abstract »    Full Text »    PDF »
Predicted MicroRNAs for Mammalian Circadian Rhythms.
D. d. S. Figueredo, M. R. Barbosa, D. L. G. Gitai, and T. G. de Andrade (2013)
J Biol Rhythms 28, 107-116
   Abstract »    Full Text »    PDF »
Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome.
C. S. Moller-Levet, S. N. Archer, G. Bucca, E. E. Laing, A. Slak, R. Kabiljo, J. C. Y. Lo, N. Santhi, M. von Schantz, C. P. Smith, et al. (2013)
PNAS 110, E1132-E1141
   Abstract »    Full Text »    PDF »
Protein acetylation links the circadian clock to mitochondrial function.
G. Rey and A. B. Reddy (2013)
PNAS 110, 3210-3211
   Full Text »    PDF »
Histone methyltransferase MLL3 contributes to genome-scale circadian transcription.
U. K. Valekunja, R. S. Edgar, M. Oklejewicz, G. T. J. van der Horst, J. S. O'Neill, F. Tamanini, D. J. Turner, and A. B. Reddy (2013)
PNAS 110, 1554-1559
   Abstract »    Full Text »    PDF »
Nascent-Seq analysis of Drosophila cycling gene expression.
J. Rodriguez, C.-H. A. Tang, Y. L. Khodor, S. Vodala, J. S. Menet, and M. Rosbash (2013)
PNAS 110, E275-E284
   Abstract »    Full Text »    PDF »
Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA-binding of the CLOCK:BMAL1 complex in mice.
K. Shimomura, V. Kumar, N. Koike, T.-K. Kim, J. Chong, E. D. Buhr, A. R. Whiteley, S. S. Low, C. Omura, D. Fenner, et al. (2013)
eLife Sci 2, e00426
   Abstract »    Full Text »    PDF »
Interactions between the circadian clock and metabolism: there are good times and bad times.
M. Shi and X. Zheng (2013)
Acta Biochim Biophys Sin 45, 61-69
   Abstract »    Full Text »    PDF »
Ordered changes in histone modifications at the core of the Arabidopsis circadian clock.
J. Malapeira, L. C. Khaitova, and P. Mas (2012)
PNAS 109, 21540-21545
   Abstract »    Full Text »    PDF »
The ticking tail: daily oscillations in mRNA poly(A) tail length drive circadian cycles in protein synthesis.
I. Gotic and U. Schibler (2012)
Genes & Dev. 26, 2669-2672
   Abstract »    Full Text »    PDF »
Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression.
S. Kojima, E. L. Sher-Chen, and C. B. Green (2012)
Genes & Dev. 26, 2724-2736
   Abstract »    Full Text »    PDF »
Circadian Surprise--It's Not All About Transcription.
C. J. Doherty and S. A. Kay (2012)
Science 338, 338-340
   Abstract »    Full Text »    PDF »
Nascent-Seq reveals novel features of mouse circadian transcriptional regulation.
J. S. Menet, J. Rodriguez, K. C. Abruzzi, and M. Rosbash (2012)
eLife Sci 1, e00011
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882