Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 338 (6113): 1476-1480

Copyright © 2012 by the American Association for the Advancement of Science

Hox Genes Regulate Digit Patterning by Controlling the Wavelength of a Turing-Type Mechanism

Rushikesh Sheth,1,*,{dagger} Luciano Marcon,2,3,* M. Félix Bastida,1,4 Marisa Junco,1 Laura Quintana,2,3 Randall Dahn,5 Marie Kmita,6,{ddagger} James Sharpe,2,3,7,{ddagger} Maria A. Ros1,4,{ddagger}

Abstract: The formation of repetitive structures (such as stripes) in nature is often consistent with a reaction-diffusion mechanism, or Turing model, of self-organizing systems. We used mouse genetics to analyze how digit patterning (an iterative digit/nondigit pattern) is generated. We showed that the progressive reduction in Hoxa13 and Hoxd11-Hoxd13 genes (hereafter referred to as distal Hox genes) from the Gli3-null background results in progressively more severe polydactyly, displaying thinner and densely packed digits. Combined with computer modeling, our results argue for a Turing-type mechanism underlying digit patterning, in which the dose of distal Hox genes modulates the digit period or wavelength. The phenotypic similarity with fish-fin endoskeleton patterns suggests that the pentadactyl state has been achieved through modification of an ancestral Turing-type mechanism.

1 Facultad de Medicina, Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas–Sociedad para el Desarrollo Regional de Cantabria–Universidad de Cantabria, 39011 Santander, Spain.
2 European Molecular Biology Laboratory (EMBL)–Centre for Genomic Regulation (CRG) Systems Biology Research Unit, CRG, Doctor. Aiguader 88, 08003 Barcelona, Spain.
3 Universitat Pompeu Fabra, 08003 Barcelona, Spain.
4 Departamento de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain.
5 7322 Countrywood Lane, Madison, WI 53719, USA.
6 Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, Québec H2W 1R7, Canada.
7 Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain.

* These authors contributed equally to this work.

{dagger} Present address: Institut de Recherches Cliniques de Montréal, University of Montréal, Montréal, Québec, Canada.

{ddagger} To whom correspondence should be addressed. E-mail: marian.ros{at} (M.A.R.); james.sharpe{at} (J.S.); marie.kmita{at} (M.K.)

A propagating ATPase gradient drives transport of surface-confined cellular cargo.
A. G. Vecchiarelli, K. C. Neuman, and K. Mizuuchi (2014)
PNAS 111, 4880-4885
   Abstract »    Full Text »    PDF »
Studies of morphogens: keep calm and carry on.
A. Stathopoulos and D. Iber (2013)
Development 140, 4119-4124
   Abstract »    Full Text »    PDF »
Transcriptional components of anteroposterior positional information during zebrafish fin regeneration.
G. Nachtrab, K. Kikuchi, V. A. Tornini, and K. D. Poss (2013)
Development 140, 3754-3764
   Abstract »    Full Text »    PDF »
The Deep Homology of the Autopod: Insights from Hox Gene Regulation.
M. C. Davis (2013)
Integr. Comp. Biol. 53, 224-232
   Abstract »    Full Text »    PDF »
Plasmid partition: sisters drifting apart.
D. Sherratt (2013)
EMBO J. 32, 1208-1210
   Full Text »    PDF »
Turing and Wolpert Work Together During Limb Development.
T. Miura (2013)
Science Signaling 6, pe14
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882