Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 339 (6118): 421-425

Copyright © 2013 by the American Association for the Advancement of Science

Reconstitution of the Vital Functions of Munc18 and Munc13 in Neurotransmitter Release

Cong Ma,1,2,3,4,*,{dagger} Lijing Su,2,3,4,* Alpay B. Seven,2,3,4 Yibin Xu,2,3,4 Josep Rizo2,3,4,{dagger}

Abstract: Neurotransmitter release depends critically on Munc18-1, Munc13, the Ca2+ sensor synaptotagmin-1, and the soluble N-ethylmaleimide–sensitive factor (NSF) attachment protein (SNAP) receptors (SNAREs) syntaxin-1, synaptobrevin, and SNAP-25. In vitro reconstitutions have shown that syntaxin-1–SNAP-25 liposomes fuse efficiently with synaptobrevin liposomes in the presence of synaptotagmin-1–Ca2+, but neurotransmitter release also requires Munc18-1 and Munc13 in vivo. We found that Munc18-1 could displace SNAP-25 from syntaxin-1 and that fusion of syntaxin-1–Munc18-1 liposomes with synaptobrevin liposomes required Munc13, in addition to SNAP-25 and synaptotagmin-1-Ca2+. Moreover, when starting with syntaxin-1–SNAP-25 liposomes, NSF–α-SNAP disassembled the syntaxin-1–SNAP-25 heterodimers and abrogated fusion, which then required Munc18-1 and Munc13. We propose that fusion does not proceed through syntaxin-1–SNAP-25 heterodimers but starts with the syntaxin-1–Munc18-1 complex; Munc18-1 and Munc13 then orchestrate membrane fusion together with the SNAREs and synaptotagmin-1-Ca2+ in an NSF- and SNAP-resistant manner.

1 Key Laboratory of Molecular Biophysics, Ministry of Education, and Institute of Biophysics and Biochemistry, Huazhong University of Science and Technology, Wuhan 430074, China.
2 Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
3 Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
4 Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: cong.ma7{at}gmail.com (C.M.); jose{at}arnie.swmed.edu (J.R.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Synaptic vesicle recycling: steps and principles.
S. O. Rizzoli (2014)
EMBO J. 33, 788-822
   Abstract »    Full Text »    PDF »
The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17.
P. Jiang, T. Nishimura, Y. Sakamaki, E. Itakura, T. Hatta, T. Natsume, and N. Mizushima (2014)
Mol. Biol. Cell 25, 1327-1337
   Abstract »    Full Text »    PDF »
An Extended Helical Conformation in Domain 3a of Munc18-1 Provides a Template for SNARE (Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor) Complex Assembly.
D. Parisotto, M. Pfau, A. Scheutzow, K. Wild, M. P. Mayer, J. Malsam, I. Sinning, and T. H. Sollner (2014)
J. Biol. Chem. 289, 9639-9650
   Abstract »    Full Text »    PDF »
Glycinergic feedback enhances synaptic gain in the distal retina.
Z. Jiang, J. Yang, L. A. Purpura, Y. Liu, H. Ripps, and W. Shen (2014)
J. Physiol. 592, 1479-1492
   Abstract »    Full Text »    PDF »
Munc18-2 and Syntaxin 3 Control Distinct Essential Steps in Mast Cell Degranulation.
C. Brochetta, R. Suzuki, F. Vita, M. R. Soranzo, J. Claver, L. C. Madjene, T. Attout, J. Vitte, N. Varin-Blank, G. Zabucchi, et al. (2014)
J. Immunol. 192, 41-51
   Abstract »    Full Text »    PDF »
The tethering complex HOPS catalyzes assembly of the soluble SNARE Vam7 into fusogenic trans-SNARE complexes.
M. Zick and W. Wickner (2013)
Mol. Biol. Cell 24, 3746-3753
   Abstract »    Full Text »    PDF »
Prefusion structure of syntaxin-1A suggests pathway for folding into neuronal trans-SNARE complex fusion intermediate.
B. Liang, V. Kiessling, and L. K. Tamm (2013)
PNAS 110, 19384-19389
   Abstract »    Full Text »    PDF »
Profile of Thomas Sudhof, James Rothman, and Randy Schekman, 2013 Nobel Laureates in Physiology or Medicine.
W. T. Wickner (2013)
PNAS 110, 18349-18350
   Full Text »    PDF »
Doc2b Synchronizes Secretion from Chromaffin Cells by Stimulating Fast and Inhibiting Sustained Release.
P. S. Pinheiro, H. de Wit, A. M. Walter, A. J. Groffen, M. Verhage, and J. B. Sorensen (2013)
J. Neurosci. 33, 16459-16470
   Abstract »    Full Text »    PDF »
Fusion Proteins and Select Lipids Cooperate as Membrane Receptors for the Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor (SNARE) Vam7p.
V. Karunakaran and W. Wickner (2013)
J. Biol. Chem. 288, 28557-28566
   Abstract »    Full Text »    PDF »
Superpriming of synaptic vesicles after their recruitment to the readily releasable pool.
J. S. Lee, W.-K. Ho, E. Neher, and S.-H. Lee (2013)
PNAS 110, 15079-15084
   Abstract »    Full Text »    PDF »
Comparative studies of Munc18c and Munc18-1 reveal conserved and divergent mechanisms of Sec1/Munc18 proteins.
H. Yu, S. S. Rathore, J. A. Lopez, E. M. Davis, D. E. James, J. L. Martin, and J. Shen (2013)
PNAS 110, E3271-E3280
   Abstract »    Full Text »    PDF »
Two gigs of Munc18 in membrane fusion.
Y.-K. Shin (2013)
PNAS 110, 14116-14117
   Full Text »    PDF »
Disassembly of All SNARE Complexes by N-Ethylmaleimide-sensitive Factor (NSF) Is Initiated by a Conserved 1:1 Interaction between {alpha}-Soluble NSF Attachment Protein (SNAP) and SNARE Complex.
S. Vivona, D. J. Cipriano, S. O'Leary, Y. H. Li, T. D. Fenn, and A. T. Brunger (2013)
J. Biol. Chem. 288, 24984-24991
   Abstract »    Full Text »    PDF »
Prevalent mechanism of membrane bridging by synaptotagmin-1.
A. B. Seven, K. D. Brewer, L. Shi, Q.-X. Jiang, and J. Rizo (2013)
PNAS 110, E3243-E3252
   Abstract »    Full Text »    PDF »
Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ.
A. Pertsinidis, K. Mukherjee, M. Sharma, Z. P. Pang, S. R. Park, Y. Zhang, A. T. Brunger, T. C. Sudhof, and S. Chu (2013)
PNAS 110, E2812-E2820
   Abstract »    Full Text »    PDF »
Evidence for a radial SNARE super-complex mediating neurotransmitter release at the Drosophila neuromuscular junction.
A. Megighian, M. Zordan, S. Pantano, M. Scorzeto, M. Rigoni, D. Zanini, O. Rossetto, and C. Montecucco (2013)
J. Cell Sci. 126, 3134-3140
   Abstract »    Full Text »    PDF »
Cryo-electron tomography reveals a critical role of RIM1{alpha} in synaptic vesicle tethering.
R. Fernandez-Busnadiego, S. Asano, A.-M. Oprisoreanu, E. Sakata, M. Doengi, Z. Kochovski, M. Zurner, V. Stein, S. Schoch, W. Baumeister, et al. (2013)
J. Cell Biol. 201, 725-740
   Abstract »    Full Text »    PDF »
Arabidopsis Sec1/Munc18 Protein SEC11 Is a Competitive and Dynamic Modulator of SNARE Binding and SYP121-Dependent Vesicle Traffic.
R. Karnik, C. Grefen, R. Bayne, A. Honsbein, T. Kohler, D. Kioumourtzoglou, M. Williams, N. J. Bryant, and M. R. Blatt (2013)
PLANT CELL 25, 1368-1382
   Abstract »    Full Text »    PDF »
Chaperones That SNARE Neurotransmitter Release.
F. M. Hughson (2013)
Science 339, 406-407
   Abstract »    Full Text »    PDF »
Munc18-1 is a dynamically regulated PKC target during short-term enhancement of transmitter release.
O. Genc, O. Kochubey, R. F. Toonen, M. Verhage, and R. Schneggenburger (2013)
eLife Sci 3, e01715
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882