Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 339 (6121): 786-791

Copyright © 2013 by the American Association for the Advancement of Science

Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway

Lijun Sun,1,2,* Jiaxi Wu,1,* Fenghe Du,1,2 Xiang Chen,1,2 Zhijian J. Chen1,2,{dagger}

Abstract: The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers host immune responses such as the production of type I interferons. Cytosolic DNA induces interferons through the production of cyclic guanosine monophosphate–adenosine monophosphate (cyclic GMP-AMP, or cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced interferon-β in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and interferon-β induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP.

1 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
2 Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: zhijian.chen{at}

Inflammatory Cytokines Break Down Intrinsic Immunological Tolerance of Human Primary Keratinocytes to Cytosolic DNA.
S. Chiliveru, S. H. Rahbek, S. K. Jensen, S. E. Jorgensen, S. K. Nissen, S. H. Christiansen, T. H. Mogensen, M. R. Jakobsen, L. Iversen, C. Johansen, et al. (2014)
J. Immunol. 192, 2395-2404
   Abstract »    Full Text »    PDF »
Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission.
V. Richter, C. S. Palmer, L. D. Osellame, A. P. Singh, K. Elgass, D. A. Stroud, H. Sesaki, M. Kvansakul, and M. T. Ryan (2014)
J. Cell Biol. 204, 477-486
   Abstract »    Full Text »    PDF »
Innate Immune Response Induced by Baculovirus Attenuates Transgene Expression in Mammalian Cells.
C. Ono, A. Ninomiya, S. Yamamoto, T. Abe, X. Wen, T. Fukuhara, M. Sasai, M. Yamamoto, T. Saitoh, T. Satoh, et al. (2014)
J. Virol. 88, 2157-2167
   Abstract »    Full Text »    PDF »
An Alternative Splicing Isoform of MITA Antagonizes MITA-Mediated Induction of Type I IFNs.
H. Chen, R. Pei, W. Zhu, R. Zeng, Y. Wang, Y. Wang, M. Lu, and X. Chen (2014)
J. Immunol. 192, 1162-1170
   Abstract »    Full Text »    PDF »
Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality.
J. Wu, L. Tian, X. Yu, S. Pattaradilokrat, J. Li, M. Wang, W. Yu, Y. Qi, A. E. Zeituni, S. C. Nair, et al. (2014)
PNAS 111, E511-E520
   Abstract »    Full Text »    PDF »
IFI16 DNA Sensor Is Required for Death of Lymphoid CD4 T Cells Abortively Infected with HIV.
K. M. Monroe, Z. Yang, J. R. Johnson, X. Geng, G. Doitsh, N. J. Krogan, and W. C. Greene (2014)
Science 343, 428-432
   Abstract »    Full Text »    PDF »
Adenovirus Detection by the cGAS/STING/TBK1 DNA Sensing Cascade.
E. Lam, S. Stein, and E. Falck-Pedersen (2014)
J. Virol. 88, 974-981
   Abstract »    Full Text »    PDF »
2013: Signaling Breakthroughs of the Year.
J. D. Berndt and N. R. Gough (2014)
Science Signaling 7, eg1
   Abstract »    Full Text »    PDF »
Role of the HIN Domain in Regulation of Innate Immune Responses.
N. Shaw and Z.-J. Liu (2014)
Mol. Cell. Biol. 34, 2-15
   Abstract »    Full Text »    PDF »
MPYS/STING-Mediated TNF-{alpha}, Not Type I IFN, Is Essential for the Mucosal Adjuvant Activity of (3'-5')-Cyclic-Di-Guanosine-Monophosphate In Vivo.
S. M. Blaauboer, V. D. Gabrielle, and L. Jin (2014)
J. Immunol. 192, 492-502
   Abstract »    Full Text »    PDF »
Suppression of PACT-Induced Type I Interferon Production by Herpes Simplex Virus 1 Us11 Protein.
C. Kew, P.-Y. Lui, C.-P. Chan, X. Liu, S. W. N. Au, I. Mohr, D.-Y. Jin, and K.-H. Kok (2013)
J. Virol. 87, 13141-13149
   Abstract »    Full Text »    PDF »
PNAS Plus: From the Cover: IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication.
M. R. Jakobsen, R. O. Bak, A. Andersen, R. K. Berg, S. B. Jensen, T. Jin, A. Laustsen, K. Hansen, L. Ostergaard, K. A. Fitzgerald, et al. (2013)
PNAS 110, E4571-E4580
   Abstract »    Full Text »    PDF »
HIV provides ample PAMPs for innate immune sensing.
B. Lee (2013)
PNAS 110, 19183-19184
   Full Text »    PDF »
Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants.
T. W. Dubensky Jr, D. B. Kanne, and M. L. Leong (2013)
Therapeutic Advances in Vaccines 1, 131-143
   Abstract »    PDF »
STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease.
J. Petrasek, A. Iracheta-Vellve, T. Csak, A. Satishchandran, K. Kodys, E. A. Kurt-Jones, K. A. Fitzgerald, and G. Szabo (2013)
PNAS 110, 16544-16549
   Abstract »    Full Text »    PDF »
Cyclic-di-GMP and cyclic-di-AMP activate the NLRP3 inflammasome.
A. A. Abdul-Sater, I. Tattoli, L. Jin, A. Grajkowski, A. Levi, B. H. Koller, I. C. Allen, S. L. Beaucage, K. A. Fitzgerald, J. P. -Y. Ting, et al. (2013)
EMBO Rep. 14, 900-906
   Abstract »    Full Text »    PDF »
Pivotal Roles of cGAS-cGAMP Signaling in Antiviral Defense and Immune Adjuvant Effects.
X.-D. Li, J. Wu, D. Gao, H. Wang, L. Sun, and Z. J. Chen (2013)
Science 341, 1390-1394
   Abstract »    Full Text »    PDF »
Cyclic GMP-AMP Synthase Is an Innate Immune Sensor of HIV and Other Retroviruses.
D. Gao, J. Wu, Y.-T. Wu, F. Du, C. Aroh, N. Yan, L. Sun, and Z. J. Chen (2013)
Science 341, 903-906
   Abstract »    Full Text »    PDF »
Radiation-sensitive Gene A (RadA) Targets DisA, DNA Integrity Scanning Protein A, to Negatively Affect Cyclic Di-AMP Synthesis Activity in Mycobacterium smegmatis.
L. Zhang and Z.-G. He (2013)
J. Biol. Chem. 288, 22426-22436
   Abstract »    Full Text »    PDF »
Systematic identification of conserved bacterial c-di-AMP receptor proteins.
R. M. Corrigan, I. Campeotto, T. Jeganathan, K. G. Roelofs, V. T. Lee, and A. Grundling (2013)
PNAS 110, 9084-9089
   Abstract »    Full Text »    PDF »
Species-specific detection of the antiviral small-molecule compound CMA by STING.
T. Cavlar, T. Deimling, A. Ablasser, K.-P. Hopfner, and V. Hornung (2013)
EMBO J. 32, 1440-1450
   Abstract »    Full Text »    PDF »
Cellular Self-Defense: How Cell-Autonomous Immunity Protects Against Pathogens.
F. Randow, J. D. MacMicking, and L. C. James (2013)
Science 340, 701-706
   Abstract »    Full Text »    PDF »
STING-Dependent Recognition of Cyclic di-AMP Mediates Type I Interferon Responses during Chlamydia trachomatis Infection.
J. R. Barker, B. J. Koestler, V. K. Carpenter, D. L. Burdette, C. M. Waters, R. E. Vance, and R. H. Valdivia (2013)
mBio 4, e00018-13
   Abstract »    Full Text »    PDF »
Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger.
U. Romling, M. Y. Galperin, and M. Gomelsky (2013)
Microbiol. Mol. Biol. Rev. 77, 1-52
   Abstract »    Full Text »    PDF »
Sensing the Dark Side of DNA.
L. A. J. O'Neill (2013)
Science 339, 763-764
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882