Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 339 (6121): 826-830

Copyright © 2013 by the American Association for the Advancement of Science

Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA

Jiaxi Wu,1,* Lijun Sun,1,2,* Xiang Chen,1 Fenghe Du,1 Heping Shi,3 Chuo Chen,3 Zhijian J. Chen1,2,{dagger}

Abstract: Cytosolic DNA induces type I interferons and other cytokines that are important for antimicrobial defense but can also result in autoimmunity. This DNA signaling pathway requires the adaptor protein STING and the transcription factor IRF3, but the mechanism of DNA sensing is unclear. We found that mammalian cytosolic extracts synthesized cyclic guanosine monophosphate–adenosine monophosphate (cyclic GMP-AMP, or cGAMP) in vitro from adenosine triphosphate and guanosine triphosphate in the presence of DNA but not RNA. DNA transfection or DNA virus infection of mammalian cells also triggered cGAMP production. cGAMP bound to STING, leading to the activation of IRF3 and induction of interferon-β. Thus, cGAMP functions as an endogenous second messenger in metazoans and triggers interferon production in response to cytosolic DNA.

1 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
2 Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
3 Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: zhijian.chen{at}

Innate Immune Response Induced by Baculovirus Attenuates Transgene Expression in Mammalian Cells.
C. Ono, A. Ninomiya, S. Yamamoto, T. Abe, X. Wen, T. Fukuhara, M. Sasai, M. Yamamoto, T. Saitoh, T. Satoh, et al. (2014)
J. Virol. 88, 2157-2167
   Abstract »    Full Text »    PDF »
Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality.
J. Wu, L. Tian, X. Yu, S. Pattaradilokrat, J. Li, M. Wang, W. Yu, Y. Qi, A. E. Zeituni, S. C. Nair, et al. (2014)
PNAS 111, E511-E520
   Abstract »    Full Text »    PDF »
Adenovirus Detection by the cGAS/STING/TBK1 DNA Sensing Cascade.
E. Lam, S. Stein, and E. Falck-Pedersen (2014)
J. Virol. 88, 974-981
   Abstract »    Full Text »    PDF »
2013: Signaling Breakthroughs of the Year.
J. D. Berndt and N. R. Gough (2014)
Science Signaling 7, eg1
   Abstract »    Full Text »    PDF »
Role of the HIN Domain in Regulation of Innate Immune Responses.
N. Shaw and Z.-J. Liu (2014)
Mol. Cell. Biol. 34, 2-15
   Abstract »    Full Text »    PDF »
MPYS/STING-Mediated TNF-{alpha}, Not Type I IFN, Is Essential for the Mucosal Adjuvant Activity of (3'-5')-Cyclic-Di-Guanosine-Monophosphate In Vivo.
S. M. Blaauboer, V. D. Gabrielle, and L. Jin (2014)
J. Immunol. 192, 492-502
   Abstract »    Full Text »    PDF »
PNAS Plus: From the Cover: IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication.
M. R. Jakobsen, R. O. Bak, A. Andersen, R. K. Berg, S. B. Jensen, T. Jin, A. Laustsen, K. Hansen, L. Ostergaard, K. A. Fitzgerald, et al. (2013)
PNAS 110, E4571-E4580
   Abstract »    Full Text »    PDF »
HIV provides ample PAMPs for innate immune sensing.
B. Lee (2013)
PNAS 110, 19183-19184
   Full Text »    PDF »
Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants.
T. W. Dubensky Jr, D. B. Kanne, and M. L. Leong (2013)
Therapeutic Advances in Vaccines 1, 131-143
   Abstract »    PDF »
Pivotal Roles of cGAS-cGAMP Signaling in Antiviral Defense and Immune Adjuvant Effects.
X.-D. Li, J. Wu, D. Gao, H. Wang, L. Sun, and Z. J. Chen (2013)
Science 341, 1390-1394
   Abstract »    Full Text »    PDF »
Cyclic GMP-AMP Synthase Is an Innate Immune Sensor of HIV and Other Retroviruses.
D. Gao, J. Wu, Y.-T. Wu, F. Du, C. Aroh, N. Yan, L. Sun, and Z. J. Chen (2013)
Science 341, 903-906
   Abstract »    Full Text »    PDF »
Radiation-sensitive Gene A (RadA) Targets DisA, DNA Integrity Scanning Protein A, to Negatively Affect Cyclic Di-AMP Synthesis Activity in Mycobacterium smegmatis.
L. Zhang and Z.-G. He (2013)
J. Biol. Chem. 288, 22426-22436
   Abstract »    Full Text »    PDF »
Systematic identification of conserved bacterial c-di-AMP receptor proteins.
R. M. Corrigan, I. Campeotto, T. Jeganathan, K. G. Roelofs, V. T. Lee, and A. Grundling (2013)
PNAS 110, 9084-9089
   Abstract »    Full Text »    PDF »
Cyclic di-AMP Is Critical for Listeria monocytogenes Growth, Cell Wall Homeostasis, and Establishment of Infection.
C. E. Witte, A. T. Whiteley, T. P. Burke, J.-D. Sauer, D. A. Portnoy, and J. J. Woodward (2013)
mBio 4, e00282-13
   Abstract »    Full Text »    PDF »
Species-specific detection of the antiviral small-molecule compound CMA by STING.
T. Cavlar, T. Deimling, A. Ablasser, K.-P. Hopfner, and V. Hornung (2013)
EMBO J. 32, 1440-1450
   Abstract »    Full Text »    PDF »
STING-Dependent Recognition of Cyclic di-AMP Mediates Type I Interferon Responses during Chlamydia trachomatis Infection.
J. R. Barker, B. J. Koestler, V. K. Carpenter, D. L. Burdette, C. M. Waters, R. E. Vance, and R. H. Valdivia (2013)
mBio 4, e00018-13
   Abstract »    Full Text »    PDF »
Sensing the Dark Side of DNA.
L. A. J. O'Neill (2013)
Science 339, 763-764
   Abstract »    Full Text »    PDF »
Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway.
L. Sun, J. Wu, F. Du, X. Chen, and Z. J. Chen (2013)
Science 339, 786-791
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882