Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 15 April 2008
Vol. 1, Issue 15, p. re2
[DOI: 10.1126/stke.115re2]

REVIEWS

Eph, a Protein Family Coming of Age: More Confusion, Insight, or Complexity?

Martin Lackmann1* and Andrew W. Boyd2

1Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
2Leukaemia Foundation Laboratory, Queensland Institute of Medical Research, Post Office Royal Brisbane Hospital, 4029, Australia.

Abstract: Since the mid-1980s, Eph receptors have evolved from being regarded as orphan receptors with unknown functions and ligands to becoming one of the most complex "global positioning systems" that regulates cell traffic in multicellular organisms. During this time, there has been an exponentially growing interest in Ephs and ephrin ligands, coinciding with important advances in the way biological function is interrogated through mapping of genomes and manipulation of genes. As a result, many of the original concepts that used to define Eph signaling and function went overboard. Clearly, the need for progress in understanding Eph-ephrin biology and the underlying molecular principles involved has been compelling. Many cell-positioning programs during normal and oncogenic development—in particular, the patterning of skeletal, vascular, and nervous systems—are modulated in some way by Eph-ephrin function. Undeniably, the complexity of the underlying signaling networks is considerable, and it seems probable that systems biology approaches are required to further improve our understanding of Eph function.

*Corresponding author. E-mail, martin.lackmann{at}med.monash.edu.au

Citation: M. Lackmann, A. W. Boyd, Eph, a Protein Family Coming of Age: More Confusion, Insight, or Complexity? Sci. Signal. 1, re2 (2008).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Eph/Ephrin signalling maintains eye field segregation from adjacent neural plate territories during forebrain morphogenesis.
F. Cavodeassi, K. Ivanovitch, and S. W. Wilson (2013)
Development 140, 4193-4202
   Abstract »    Full Text »    PDF »
Eph Receptor Signaling and Ephrins.
E. M. Lisabeth, G. Falivelli, and E. B. Pasquale (2013)
Cold Spring Harb Perspect Biol 5, a009159
   Abstract »    Full Text »    PDF »
Developing T-cell migration: role of semaphorins and ephrins.
D. A. Mendes-da-Cruz, M. A. Stimamiglio, J. J. Munoz, D. Alfaro, E. Terra-Granado, J. Garcia-Ceca, L. M. Alonso-Colmenar, W. Savino, and A. G. Zapata (2012)
FASEB J 26, 4390-4399
   Abstract »    Full Text »    PDF »
EphA2 Activation Promotes the Endothelial Cell Inflammatory Response: A Potential Role in Atherosclerosis.
S. D. Funk, A. Yurdagul Jr, P. Albert, J. G. Traylor Jr, L. Jin, J. Chen, and A. W. Orr (2012)
Arterioscler Thromb Vasc Biol 32, 686-695
   Abstract »    Full Text »    PDF »
EphA2/Ephrin-A1 Signaling Complexes Restrict Corneal Epithelial Cell Migration.
N. Kaplan, A. Fatima, H. Peng, P. J. Bryar, R. M. Lavker, and S. Getsios (2012)
Invest. Ophthalmol. Vis. Sci. 53, 936-945
   Abstract »    Full Text »    PDF »
Eph receptor function is modulated by heterooligomerization of A and B type Eph receptors.
P. W. Janes, B. Griesshaber, L. Atapattu, E. Nievergall, L. L. Hii, A. Mensinga, C. Chheang, B. W. Day, A. W. Boyd, P. I. Bastiaens, et al. (2011)
J. Cell Biol. 195, 1033-1045
   Abstract »    Full Text »    PDF »
A Paradigm Shift in EPH Receptor Interaction: Biological Relevance of EPHB6 Interaction with EPHA2 and EPHB2 in Breast Carcinoma Cell Lines.
B. P. Fox and R. P. Kandpal (2011)
Cancer Genomics Proteomics 8, 185-193
   Abstract »    Full Text »    PDF »
PTP1B regulates Eph receptor function and trafficking.
E. Nievergall, P. W. Janes, C. Stegmayer, M. E. Vail, F. G. Haj, S. W. Teng, B. G. Neel, P. I. Bastiaens, and M. Lackmann (2010)
J. Cell Biol. 191, 1189-1203
   Abstract »    Full Text »    PDF »
Ephrin-B1 forward signaling regulates craniofacial morphogenesis by controlling cell proliferation across Eph-ephrin boundaries.
J. O. Bush and P. Soriano (2010)
Genes & Dev. 24, 2068-2080
   Abstract »    Full Text »    PDF »
Architecture of Eph receptor clusters.
J. P. Himanen, L. Yermekbayeva, P. W. Janes, J. R. Walker, K. Xu, L. Atapattu, K. R. Rajashankar, A. Mensinga, M. Lackmann, D. B. Nikolov, et al. (2010)
PNAS 107, 10860-10865
   Abstract »    Full Text »    PDF »
Restriction of Receptor Movement Alters Cellular Response: Physical Force Sensing by EphA2.
K. Salaita, P. M. Nair, R. S. Petit, R. M. Neve, D. Das, J. W. Gray, and J. T. Groves (2010)
Science 327, 1380-1385
   Abstract »    Full Text »    PDF »
Cell-Specific Information Processing in Segregating Populations of Eph Receptor Ephrin-Expressing Cells.
C. Jorgensen, A. Sherman, G. I. Chen, A. Pasculescu, A. Poliakov, M. Hsiung, B. Larsen, D. G. Wilkinson, R. Linding, and T. Pawson (2009)
Science 326, 1502-1509
   Abstract »    Full Text »    PDF »
An All-Purpose Tool for Axon Guidance.
L. C. Schecterson and M. Bothwell (2008)
Science Signaling 1, pe50
   Abstract »    Full Text »    PDF »
Spatial Structure and pH-dependent Conformational Diversity of Dimeric Transmembrane Domain of the Receptor Tyrosine Kinase EphA1.
E. V. Bocharov, M. L. Mayzel, P. E. Volynsky, M. V. Goncharuk, Y. S. Ermolyuk, A. A. Schulga, E. O. Artemenko, R. G. Efremov, and A. S. Arseniev (2008)
J. Biol. Chem. 283, 29385-29395
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882