Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 6 May 2008
Vol. 1, Issue 18, p. ec170
[DOI: 10.1126/stke.118ec170]


Cell Survival Signaling Survival Strategies

L. Bryan Ray

Science, Science Signaling, AAAS, Washington, DC 20005, USA

Along with its role in control of metabolism, the enzyme glycogen synthase kinase 3β (GSK3β) functions in a signaling mechanism that controls transcription. When GSK3β is active, it phosphorylates β-catenin and promotes degradation of the β-catenin protein. Inhibition of GSK3 permits accumulation of β-catenin, which works in the nucleus with transcription factors to promote expression of target genes. Thornton et al. show that activation of the p38 mitogen-activated protein kinase (MAPK) appears to directly phosphorylate and thereby inhibit GSK3β. Mouse embryo fibroblasts lacking enzymes that lead to activation of p38 were deficient in phosphorylation of GSK3β. The authors propose that such a signaling pathway may allow cellular stresses and cytokines that activate p38 MAPK to influence cell survival.

T. M. Thornton, G. Pedraza-Alva, B. Deng, C. D. Wood, A. Aronshtam, J. L. Clements, G. Sabio, R. J. Davis, D. E. Matthews, B. Doble, M. Rincon, Phosphorylation by p38 MAPK as an alternative pathway for GSK3β inactivation. Science 320, 667-670 (2008). [Abstract] [Full Text]

Citation: L. B. Ray, Signaling Survival Strategies. Sci. Signal. 1, ec170 (2008).

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882