Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 10 June 2008
Vol. 1, Issue 23, p. ec218
[DOI: 10.1126/scisignal.123ec218]


Development Modular Morphology

Annalisa M. VanHook

Science Signaling, AAAS, Washington, DC 20005, USA

Developmental genetics data from invertebrate model systems have enabled the description of gene regulatory networks that control cell fate determination during development. It is less clear how these developmental regulatory networks modulate the processes through which specified cells generate morphological form, such as migration and shape change. The primitive chordate Ciona intestinalis has emerged as a model for studying complex morphogenetic events in a system that is similar to vertebrates but morphologically simpler and more experimentally manipulable. Christiaen et al. identified transcriptionally regulated targets of the forkhead box transcription factor FoxF and fibroblast growth factor (FGF) signaling, two components involved in heart development in Ciona. The genetic network involved in heart specification regulated the expression of a subset of genes whose products promote or coordinate cellular processes, such as filipodial extension and adhesion, required for migration of the heart precursor cells. In contrast, many genes encoding other proteins involved in the mechanics of migration appeared to be constitutively expressed. The encoded proteins regulated by the heart genetic network functioned at key points to regulate migration processes independently from one another and from other cellular inputs. This implies a mechanism whereby developmental regulatory networks act as modules that can be added, removed, and shuffled to generate many different combinations of cell behaviors and, therefore, many different morphologies.

L. Christiaen, B. Davidson, T. Kawashima, W. Powell, H. Nolla, K. Vranizan, M. Levine, The transcription/migration interface in heart precursors of Ciona intestinalis. Science 320, 1349-1352 (2008). [Abstract] [Full Text]

Citation: A. M. VanHook, Modular Morphology. Sci. Signal. 1, ec218 (2008).

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882