Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 6 January 2009
Vol. 2, Issue 52, p. pe1
[DOI: 10.1126/scisignal.252pe1]


MicroRNAs: Opening a New Vein in Angiogenesis Research

Jason E. Fish and Deepak Srivastava*

Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158, USA, and Department of Pediatrics and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA.

Abstract: Activation of the angiogenic program in endothelial cells is vital for normal embryonic development and for physiological angiogenesis in the adult. In addition, angiogenesis is an important therapeutic target: Formation of new blood vessels is desirable for regenerative purposes, such as during tissue healing or transplantation, but can be pathological, as in diabetic retinopathy and cancer. The response of the vascular endothelium to angiogenic stimuli is modulated by noncoding RNAs called microRNAs. The endothelial cell–specific microRNA microRNA-126 (miR-126) promotes angiogenesis in response to angiogenic growth factors, such as vascular endothelial growth factor or basic fibroblast growth factor, by repressing negative regulators of signal transduction pathways. Additional microRNAs have been implicated in the regulation of various aspects of angiogenesis. Thus, targeting the expression of microRNAs may be a novel therapeutic approach for diseases involving excess or insufficient vasculature.

* Corresponding author. E-mail, dsrivastava{at}

Citation: J. E. Fish, D. Srivastava, MicroRNAs: Opening a New Vein in Angiogenesis Research. Sci. Signal. 2, pe1 (2009).

Read the Full Text

Recurrent Miscarriage and Micro-RNA Among North Indian Women.
F. Parveen and S. Agrawal (2014)
Reproductive Sciences
   Abstract »    Full Text »    PDF »
Dicer Knockdown Inhibits Endothelial Cell Tumor Growth via MicroRNA 21a-3p Targeting of Nox-4.
G. M. Gordillo, A. Biswas, S. Khanna, X. Pan, M. Sinha, S. Roy, and C. K. Sen (2014)
J. Biol. Chem. 289, 9027-9038
   Abstract »    Full Text »    PDF »
MicroRNA 329 Suppresses Angiogenesis by Targeting CD146.
P. Wang, Y. Luo, H. Duan, S. Xing, J. Zhang, D. Lu, J. Feng, D. Yang, L. Song, and X. Yan (2013)
Mol. Cell. Biol. 33, 3689-3699
   Abstract »    Full Text »    PDF »
Neutral Sphingomyelinase 2 (nSMase2)-dependent Exosomal Transfer of Angiogenic MicroRNAs Regulate Cancer Cell Metastasis.
N. Kosaka, H. Iguchi, K. Hagiwara, Y. Yoshioka, F. Takeshita, and T. Ochiya (2013)
J. Biol. Chem. 288, 10849-10859
   Abstract »    Full Text »    PDF »
Transforming Growth Factor {beta}-regulated MicroRNA-29a Promotes Angiogenesis through Targeting the Phosphatase and Tensin Homolog in Endothelium.
J. Wang, Y. Wang, Y. Wang, Y. Ma, Y. Lan, and X. Yang (2013)
J. Biol. Chem. 288, 10418-10426
   Abstract »    Full Text »    PDF »
miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF.
C.-Y. Sun, X.-M. She, Y. Qin, Z.-B. Chu, L. Chen, L.-S. Ai, L. Zhang, and Y. Hu (2013)
Carcinogenesis 34, 426-435
   Abstract »    Full Text »    PDF »
AngiomiR-126 expression and secretion from circulating CD34+ and CD14+ PBMCs: role for proangiogenic effects and alterations in type 2 diabetics.
P. Mocharla, S. Briand, G. Giannotti, C. Dorries, P. Jakob, F. Paneni, T. Luscher, and U. Landmesser (2013)
Blood 121, 226-236
   Abstract »    Full Text »    PDF »
Loss of AngiomiR-126 and 130a in Angiogenic Early Outgrowth Cells From Patients With Chronic Heart Failure: Role for Impaired In Vivo Neovascularization and Cardiac Repair Capacity.
P. Jakob, C. Doerries, S. Briand, P. Mocharla, N. Krankel, C. Besler, M. Mueller, C. Manes, C. Templin, C. Baltes, et al. (2012)
Circulation 126, 2962-2975
   Abstract »    Full Text »    PDF »
MicroRNA-10 Regulates the Angiogenic Behavior of Zebrafish and Human Endothelial Cells by Promoting Vascular Endothelial Growth Factor Signaling.
D. Hassel, P. Cheng, M. P. White, K. N. Ivey, J. Kroll, H. G. Augustin, H. A. Katus, D. Y. R. Stainier, and D. Srivastava (2012)
Circ. Res. 111, 1421-1433
   Abstract »    Full Text »    PDF »
microRNAs related to angiogenesis are dysregulated in endometrioid endometrial cancer.
L. A. Ramon, A. Braza-Boils, J. Gilabert, M. Chirivella, F. Espana, A. Estelles, and J. Gilabert-Estelles (2012)
Hum. Reprod. 27, 3036-3045
   Abstract »    Full Text »    PDF »
Emerging Role of Micro-RNAs in the Regulation of Angiogenesis.
S. Anand and D. A. Cheresh (2011)
Genes & Cancer 2, 1134-1138
   Abstract »    Full Text »    PDF »
MicroRNA-16 and MicroRNA-424 Regulate Cell-Autonomous Angiogenic Functions in Endothelial Cells via Targeting Vascular Endothelial Growth Factor Receptor-2 and Fibroblast Growth Factor Receptor-1.
A. Chamorro-Jorganes, E. Araldi, L. O. F. Penalva, D. Sandhu, C. Fernandez-Hernando, and Y. Suarez (2011)
Arterioscler Thromb Vasc Biol 31, 2595-2606
   Abstract »    Full Text »    PDF »
{alpha}v Integrins in Angiogenesis and Cancer.
S. M. Weis and D. A. Cheresh (2011)
Cold Spring Harb Perspect Med 1, a006478
   Abstract »    Full Text »    PDF »
Heparin Impairs Angiogenesis through Inhibition of MicroRNA-10b.
X. Shen, J. Fang, X. Lv, Z. Pei, Y. Wang, S. Jiang, and K. Ding (2011)
J. Biol. Chem. 286, 26616-26627
   Abstract »    Full Text »    PDF »
Myocardial AKT: The Omnipresent Nexus.
M. A. Sussman, M. Volkers, K. Fischer, B. Bailey, C. T. Cottage, S. Din, N. Gude, D. Avitabile, R. Alvarez, B. Sundararaman, et al. (2011)
Physiol Rev 91, 1023-1070
   Abstract »    Full Text »    PDF »
microRNAs in Early Diabetic Retinopathy in Streptozotocin-Induced Diabetic Rats.
B. Kovacs, S. Lumayag, C. Cowan, and S. Xu (2011)
Invest. Ophthalmol. Vis. Sci. 52, 4402-4409
   Abstract »    Full Text »    PDF »
microRNAs expression in endometriosis and their relation to angiogenic factors.
L. A. Ramon, A. Braza-Boils, J. Gilabert-Estelles, J. Gilabert, F. Espana, M. Chirivella, and A. Estelles (2011)
Hum. Reprod. 26, 1082-1090
   Abstract »    Full Text »    PDF »
MicroRNA profiling during mouse ventricular maturation: a role for miR-27 modulating Mef2c expression.
A. Chinchilla, E. Lozano, H. Daimi, F. J. Esteban, C. Crist, A. E. Aranega, and D. Franco (2011)
Cardiovasc Res 89, 98-108
   Abstract »    Full Text »    PDF »
Andes Virus Regulation of Cellular MicroRNAs Contributes to Hantavirus-Induced Endothelial Cell Permeability.
T. Pepini, E. E. Gorbunova, I. N. Gavrilovskaya, J. E. Mackow, and E. R. Mackow (2010)
J. Virol. 84, 11929-11936
   Abstract »    Full Text »    PDF »
Ets-1 and Ets-2 Regulate the Expression of MicroRNA-126 in Endothelial Cells.
T. A. Harris, M. Yamakuchi, M. Kondo, P. Oettgen, and C. J. Lowenstein (2010)
Arterioscler Thromb Vasc Biol 30, 1990-1997
   Abstract »    Full Text »    PDF »
miR-31 Functions as a Negative Regulator of Lymphatic Vascular Lineage-Specific Differentiation In Vitro and Vascular Development In Vivo.
D. M. Leslie Pedrioli, T. Karpanen, V. Dabouras, G. Jurisic, G. van de Hoek, J. W. Shin, D. Marino, R. E. Kalin, S. Leidel, P. Cinelli, et al. (2010)
Mol. Cell. Biol. 30, 3620-3634
   Abstract »    Full Text »    PDF »
MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1.
T. Zhao, J. Li, and A. F. Chen (2010)
Am J Physiol Endocrinol Metab 299, E110-E116
   Abstract »    Full Text »    PDF »
MicroRNAs in Angiogenesis and Vascular Smooth Muscle Cell Function.
S. Daubman (2010)
Circ. Res. 106, 423-425
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882