Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 28 April 2009
Vol. 2, Issue 68, p. ra18
[DOI: 10.1126/scisignal.2000188]

RESEARCH ARTICLES

Ligand Binding to LRP1 Transactivates Trk Receptors by a Src Family Kinase–Dependent Pathway

Yang Shi1, Elisabetta Mantuano1,2, Gen Inoue2,3, W. Marie Campana2, and Steven L. Gonias1*

1 Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093–0612, USA.
2 Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA.
3 Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8677 Japan.

Abstract: Low-density lipoprotein receptor–related protein 1 (LRP1) functions in endocytosis and intracellular signaling for a variety of structurally diverse ligands. Although LRP1 has been implicated in several aspects of neuronal function, molecular mechanisms underlying the activity of neuronal LRP1 remain unclear. Here, we describe a signaling pathway whereby LRP1 transactivates Trk receptors. Binding of tissue-type plasminogen activator or {alpha}2-macroglobulin ({alpha}2M) to LRP1 resulted in Src family kinase (SFK) activation and SFK-dependent Trk receptor transactivation in PC12 cells and neurons. Trk receptor transactivation was necessary for activation of Akt and extracellular signal–regulated kinase and for neurite outgrowth downstream of LRP1. Injection of the LRP1-binding domain of {alpha}2M into rat dorsal root ganglia induced Trk receptor phosphorylation, which was blocked by receptor-associated protein, an antagonist of ligand binding to LRP1. Trk receptor transactivation provides a mechanism by which diverse LRP1 ligands may show neurotrophic activity.

* To whom correspondence should be addressed. E-mail: sgonias{at}ucsd.edu

Citation: Y. Shi, E. Mantuano, G. Inoue, W. M. Campana, S. L. Gonias, Ligand Binding to LRP1 Transactivates Trk Receptors by a Src Family Kinase–Dependent Pathway. Sci. Signal. 2, ra18 (2009).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Low-Density Lipoprotein Receptor-Related Protein-1: Role in the Regulation of Vascular Integrity.
D. K. Strickland, D. T. Au, P. Cunfer, and S. C. Muratoglu (2014)
Arterioscler Thromb Vasc Biol 34, 487-498
   Abstract »    Full Text »    PDF »
LRP1 Assembles Unique Co-receptor Systems to Initiate Cell Signaling in Response to Tissue-type Plasminogen Activator and Myelin-associated Glycoprotein.
E. Mantuano, M. S. Lam, and S. L. Gonias (2013)
J. Biol. Chem. 288, 34009-34018
   Abstract »    Full Text »    PDF »
Low-density Lipoprotein Receptor-related Protein 1 (LRP1)-dependent Cell Signaling Promotes Axonal Regeneration.
C. Yoon, E. A. Van Niekerk, K. Henry, T. Ishikawa, S. Orita, M. H. Tuszynski, and W. M. Campana (2013)
J. Biol. Chem. 288, 26557-26568
   Abstract »    Full Text »    PDF »
Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Modulates N-Methyl-D-aspartate (NMDA) Receptor-dependent Intracellular Signaling and NMDA-induced Regulation of Postsynaptic Protein Complexes.
C. Nakajima, A. Kulik, M. Frotscher, J. Herz, M. Schafer, H. H. Bock, and P. May (2013)
J. Biol. Chem. 288, 21909-21923
   Abstract »    Full Text »    PDF »
Schwann Cell LRP1 Regulates Remak Bundle Ultrastructure and Axonal Interactions to Prevent Neuropathic Pain.
S. Orita, K. Henry, E. Mantuano, K. Yamauchi, A. De Corato, T. Ishikawa, M. L. Feltri, L. Wrabetz, A. Gaultier, M. Pollack, et al. (2013)
J. Neurosci. 33, 5590-5602
   Abstract »    Full Text »    PDF »
LDL receptor-related protein-1 is a sialic-acid-independent receptor for myelin-associated glycoprotein that functions in neurite outgrowth inhibition by MAG and CNS myelin.
T. L. Stiles, T. L. Dickendesher, A. Gaultier, A. Fernandez-Castaneda, E. Mantuano, R. J. Giger, and S. L. Gonias (2013)
J. Cell Sci. 126, 209-220
   Abstract »    Full Text »    PDF »
Secreted Hsp90 Is a Novel Regulator of the Epithelial to Mesenchymal Transition (EMT) in Prostate Cancer.
M. W. Hance, K. Dole, U. Gopal, J. E. Bohonowych, A. Jezierska-Drutel, C. A. Neumann, H. Liu, I. P. Garraway, and J. S. Isaacs (2012)
J. Biol. Chem. 287, 37732-37744
   Abstract »    Full Text »    PDF »
Tissue Plasminogen Activator Activates NF-{kappa}B through a Pathway Involving Annexin A2/CD11b and Integrin-Linked Kinase.
L. Lin, C. Wu, and K. Hu (2012)
J. Am. Soc. Nephrol. 23, 1329-1338
   Abstract »    Full Text »    PDF »
The Unfolded Protein Response Is a Major Mechanism by Which LRP1 Regulates Schwann Cell Survival after Injury.
E. Mantuano, K. Henry, T. Yamauchi, N. Hiramatsu, K. Yamauchi, S. Orita, K. Takahashi, J. H. Lin, S. L. Gonias, and W. M. Campana (2011)
J. Neurosci. 31, 13376-13385
   Abstract »    Full Text »    PDF »
Adiponectin Ameliorates Doxorubicin-induced Cardiotoxicity through Akt Protein-dependent Mechanism.
S. Maruyama, R. Shibata, K. Ohashi, T. Ohashi, H. Daida, K. Walsh, T. Murohara, and N. Ouchi (2011)
J. Biol. Chem. 286, 32790-32800
   Abstract »    Full Text »    PDF »
{alpha}2-Macroglobulin Induces Glial Fibrillary Acidic Protein Expression Mediated by Low-Density Lipoprotein Receptor-Related Protein 1 in Muller Cells.
P. F. Barcelona, S. G. Ortiz, G. A. Chiabrando, and M. C. Sanchez (2011)
Invest. Ophthalmol. Vis. Sci. 52, 778-786
   Abstract »    Full Text »    PDF »
Inflammatory mediators promote production of shed LRP1/CD91, which regulates cell signaling and cytokine expression by macrophages.
M. Gorovoy, A. Gaultier, W. M. Campana, G. S. Firestein, and S. L. Gonias (2010)
J. Leukoc. Biol. 88, 769-778
   Abstract »    Full Text »    PDF »
Factor XII bridges coagulation and fibrinolysis again.
S. L. Gonias (2010)
Blood 115, 4979-4980
   Full Text »    PDF »
Low Density Lipoprotein Receptor-related Protein (LRP1) Regulates Rac1 and RhoA Reciprocally to Control Schwann Cell Adhesion and Migration.
E. Mantuano, M. Jo, S. L. Gonias, and W. M. Campana (2010)
J. Biol. Chem. 285, 14259-14266
   Abstract »    Full Text »    PDF »
Nontraditional Signaling Mechanisms of Lipoprotein Receptors.
G. W. Rebeck (2009)
Science Signaling 2, pe28
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882