Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 23 June 2009
Vol. 2, Issue 76, p. ec207
[DOI: 10.1126/scisignal.276ec207]

EDITORS' CHOICE

Biochemistry Kinetic Control of NF-{kappa}B

Nancy R. Gough

Science Signaling, AAAS, Washington, DC 20005, USA

Nuclear factor {kappa}B (NF-{kappa}B) is a transcription factor composed of two subunits that interact with each other through the Rel-homology domain (RHD). The mammalian NF-{kappa}B family includes five genes encoding NF-{kappa}B1 (p50 and its precursor p105), NF-{kappa}B2 (p52 and its precursor p100), c-Rel, RelA (p65), and RelB; active transcription complexes include either p50 or p52 and one of c-Rel, RelA, or RelB. Two articles by Hoffmann and colleagues describe regulation of NF-{kappa}B activity through the p100 and p105 proteins, which serve the dual roles of inhibitor of {kappa}B (I{kappa}B) proteins and of precursors for p52 and p50. Savinova et al. used biochemical experiments of cellular or recombinant proteins (with or without various mutations) to determine that p100 and p105 were present in high-molecular-weight complexes, whereas other I{kappa}B proteins (I{kappa}B{alpha}, I{kappa}Bβ, I{kappa}B{varepsilon}) were present in low-molecular-weight complexes. The p100 and p105 high-molecular-weight complexes also included p50, p52, RelA, c-Rel, and RelB. p100 and p105 proteins have both the RHD and an ankyrin repeat domain (ANK), and Savinova et al. found that both of these domains were involved in complex formation. They propose a model whereby p100 or p105 is synthesized and dimerizes through the RHD with either itself (complex I) or another NF-{kappa}B molecule (complex II), depending on synthesis rates and abundance of the various subunits. Either of these complexes may then bind preformed NF-{kappa}B dimers and inhibit their activity or may be processed to form the transcription factor subunit p52 or p50. The authors propose that the kinetics of the interactions between the RHDs and ANKs controls the availability of NF-{kappa}B transcriptional dimers both through regulation of precursor processing and through the action of p100 and p105 as I{kappa}Bs. By mathematically modeling the activation of NF-{kappa}B under conditions lacking either I{kappa}B{alpha} or the I{kappa}B activity of p100 (which they refer to as I{kappa}B{delta} in this context), Shih et al. found that loss of I{kappa}B{alpha} caused misregulation in response to transient stimuli and that loss of I{kappa}B{delta} caused misregulation of NF-{kappa}B in response to prolonged stimuli. These predictions were verified by analyzing the responses of wild-type or I{kappa}B{delta}-deficient or I{kappa}B{alpha}-deficient cells (in which the RelA/p50 dimer predominates) to either cytokines (trigger a transient NF-{kappa}B response) or pathogens (trigger a prolonged NF-{kappa}B response). The response to cytokines was enhanced by loss of I{kappa}B{alpha}, whereas the response to pathogens was enhanced by loss of I{kappa}B{delta}. Additional experiments in which sequential stimuli were applied suggested that I{kappa}B{delta} was necessary for the attenuation of NF-{kappa}B signaling to a second stimulus in primed cells (first exposed to a prolonged initial stimulus followed by a rest period, and then subsequently exposed to a second stimulus). Together these two articles provide a framework for understanding the kinetics of NF-{kappa}B responses and the molecular mechanisms that produce the temporal regulation.

O. V. Savinova, A. Hoffmann, G. Ghosh, The Nfkb1 and Nfkb2 proteins p105 and p100 function as the core of high-molecular-weight heterogeneous complexes. Mol. Cell 34, 591-602 (2009). [PubMed]

V. F.-S. Shih, J. D. Kearns, S. Basak, O. V. Savinova, G. Ghosh, A. Hoffmann, Kinetic control of negative feedback regulators of NF-{kappa}B/RelA determines their pathogen- and cytokine-receptor signaling specificity. Proc. Natl. Acad. Sci. U.S.A. 106, 9619-9624 (2009). [Abstract] [Full Text]

Citation: N. R. Gough, Kinetic Control of NF-{kappa}B. Sci. Signal. 2, ec207 (2009).


To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882